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PRESIDENTIAL ADDRESS

I wield the flail of the lashing hail,
And whiten the green plains under,

And then again I dissolve it in rain,
And laugh as I pass in thunder.

In my introductory remarks to the proceedings of the
10th Conference I reviewed briefly the history of research on
clouds and precipitation, discussed the growing importance
of the subject, and made some prognostications as to likely
developments (see also the Bulletin of the American
Meteorological Society, 70, 282 and 72, 184). The last four
years have seen no letup in either the pace of research or in
the growing recognition of the importance of clouds and
precipitation in atmospheric processes and in the future of
planet earth.

The International Conference on Clouds and
Precipitation (ICCP) (or the Cloud Physics Conference, as it
used to be called) reflects the evolution of the subject. The
exponential rise in the number of papers continues with the
11th Conference, to which 613 papers were submitted (Fig.
1). This, despite the fact that over the past several decades
the International Commission on Clouds and Precipitation has
spawned international conferences, workshops and symposia
on Atmospheric Aerosol and Nucleation, Atmospheric
Electricity, Weather Modification, Cloud Modeling, and
Acerosol-Cloud-Climate Interactions. However, of much
greater importance than mere increases in numbers of papers
(which are a mixed blessing!) are the quality and diversity of
the papers.
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Fig. 1. Trends in number of papers submitted and accepred
Jor the International Conference on Clouds and Precipitation.
(Note: in some cases data is not available.)

I believe that the quality, or more accurately, perhaps,
the relevance, of the papers submitted to the ICCP has
improved over the years. This is dug, in large part, to the
increasingly powerful observational and numerical modeling
capabilities that we can bring to bear on a wide variety of
problems; these capabilities are beginning to approach the
sophistication required to match the complexities of cloud and
precipitation processes.

Percy Bysshe Shelley
"The Cloud"”

The need for increasingly diverse, and inter-
disciplinary, research on clouds and precipitation processes
was a subject that I dwelled on in my introductory remarks to
the 10th Conference. Figure 2 compares the distribution of
papers by methodology (field, laboratory, theoretical and
numerical modeling) and by scale ("microscale” — defined as
precipitation size and below — and "larger scale") for the
1968, 1988 and 1992 ICCP. The significant change in trends
between 1968 and 1988 are seen to be maintained in 1992.
(The relatively small differences in the statistical results for’
1988 and 1992 are probably due more to changes in the way
the papers were classified — see note to caption of Fig. 2 —
than to any significant trends since 1988.) Thus, compared
to twenty-five years ago, the 1992 conference has
significantly more papers on field studies and numerical
modeling, and dramatically fewer papers on laboratory
studies (unfortunately almost a dying breed!). Comparing the
scales of phenomena with which the papers are primarily
concerned, we see that there has been a significant decrease in
papers devoted to microscale studies from 1968 to 1992 but
not a correspondingly large increase in papers devoted to
larger scale studies. Instead, and this is most encouraging, in
1992 multiscale studies account for nearly one third of the
papers presented at the ICCP.
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Fig. 2. Division by methodology (histograms) and scale of
the phenomenon studied (percentages above the histograms)
of the papers presented at the 1968, 1988 and 1992
International Conferences on Clouds and Precipitation.
(Papers in the 1992 conference that used more than one
methodology are included in more than one of the four
categories, consequently the percentages do not add to 100.
This is not the case for the 1968 and 1988 conference, where
papers were assigned to just one dominant methodology.
Also, papers in the 1992 conference that encompassed both
microscale and larger scales are classified as "multiscale”;
this was not done for the 1968 and 1988 conferences.)



In addition to traditional topics covered in the ICCP
(e.g. microphysics, dynamics, modeling, severe storms,
instrumentation), and topics that have become common in
more recent years (e.g. clouds and radiation, cloud
chemistry, satellite studies), sessions on forecasting, general
circulation and climate are included in the 11th Conference. I
hope that these subjects, which are intimately involved with
clouds and precipitation and are likely to become increasingly
important in the future, will figure even more prominently in
the next ICCP.

Only those who have organized an international
conference realize how much work is involved in bringing it
to fruition. In the two ICCP conferences for which I have
been Chairman of the International Program Committee I
have had the support and help of excellent committee
members at the international, national and local organizing
levels. In the case of the 11th Conference, I would like to
thank, in particular, Professor Roddy Rogers, Chairman of
the National Organizing Committee, and Professor Henry
Leighton, Chairman of the Local Organizing Committee, for
their outstanding work.

At the end of this conference my term as President of
the International Commission on Clouds and Precipitation
will come to an end. I have been fortunate to occupy this
position during a period of great scientific excitement and
progress in our subject. The remainder of this century should
see similar advances (beyond that my crystal ball cannot see).
I trust that the International Commission will continue to play
an important role in helping to foster these advances and in
providing means for communicating them among the nations
of the world.

Peter V. Hobbs

President of the International
Commission on Clouds and
Precipitation (1984-1992)
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MICROPHYSICS AND THERMODYNAMICS IN FRONTAL RAINBANDS
OBSERVED DURING MFDP/FRONTS 87 EXPERIMENT

Virginie Marécal and Danitle Hauser

CNET/CNRS, Centre de Recherches en Physique de I'Environnement
Issy les Moulineaux, France.

1. INTRODUCTION

Research concerning fronts is mainly devoted to
dynamics. Nevertheless, it appears that interactions between
microphysics and thermodynamms or dynamics can play an
important role in the organization and the development of
frontal rainbands (Thorpe and Clough 1991, Lemaitre and
Scialom 1991, Lemaitre and Scialom 1992). In order to study
quantitatively interactions between microphysics and
thermodynamics, a powerful way is to introduce radar
observations (and in particular wind fields) into a diagnostic
model, called in that case a retrieval model (Rutledge and
Hobbs 1984, Ziegler 1985,...). In this paper, we analyse and
discuss the Tesults obtained with a microphyscal retrieval
model in two different cases: a narrow cold frontal rainband
(NCFR) and a rolls meso-scale circulation associated with
Conditional Symmetric Instability (CSI).

2. MODEL DESCRIPTION

The microphysical retrieval model (Marecal ez al., 1991)
‘is based upon the resolution of four continuity equations of the
form:

aa—X+v VX-V(KVX)=S§ )

where the X variable represents g, Qg» Qi or T which are
respectively the mixing ratio (m.r.) of rain, precipitating ice
particles, non-precipitating ice crystals and total water. V is
the wind vector, K the eddy mixing coefficient (taken as a
constant into the model) and S the source or sink term
corresponding to each variables.

The total water substance is defined as:
qr =qr + qg+qyv+ gi+qc )
where qy is the mixing ratio of water vapor and ¢ the mixing
Tatio of cloud water (non-precipitating droplets). The g and Qv
variables are diagnosed following Cotton ez al. (1982): if air is
not saturated with respect to liquid water, then q¢ is zero and
Qv is derived from Eq.(2); otherwise, qy equals the saturation
mixing ratio with respect to liquid water (qsw) and qc is
calculated as:
dc =AT - 9R - 4G - di - Isw 3
where qgsw is given by the Tetens' (1930) formulation (as a
function of temperature and pression).

To quantify interactions between microphysics and

thermodynamics, the following thermodynamic equation for
potential temperature () is solved jointly to the equations of
type (1):
%9-+V VO-VIKV(0-65)]= (4)
60 is the potential temperature of the environment (state of
reference) and Sg the source or sink term associated with
_exchanges of latent heat involved in microphysical processes.

Equations (1) and (4) are solved with the assumption of

stationarity (9/0t=0), and using the successive overrelaxation
method SOR (Young 1954).
v Microphysical variables and processes introduced in the
model are described in Fig. 1. Dashed lines corresponds to the
variables or processes which are not explicitly solved. In
particular, condensation is implicitly included in the model
through the equation of the mixing ratio of total water.

The parameterizations used to describe the different
microphysical processes come from Kessler (1969), Lin ez al.
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(1983), Rutledge and Hobbs (1984) and Cotton er al. (1982).
They are based on the assumption that size-distributions
(N(D)) for the two types of precipitating particles have an
exponential form:

N(D) = Ny exp(—AD)dD &)
where D is the diameter of the hydrometeors. Ng is taken as a
constant in the model.

evaporation P
WATER
deposition/subiimation 0
,Pndensation _ ! VAPOR '<-—P-—-——mmauon s |2
e TEEEmT T % |8
L} E &
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F-- y.. - melting \ A | 2 |E
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e riming cown |ig |E
f ICE é- 2
g |5 freezin A 2 I8 i g
a D 1<)
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gl Is s |8 ©
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. melting by accretion
RAIN - melting ICE PRECIPITATION
- collection ‘

PRECIPITATION

Fig. 1. Schematic of the various microphysical processes and variables
included in the model.

In the NCFR case, in situ data (aircraft microphysical
measurements and disdrometer) have shown that the
exponential hypothesis for N(D) was valid, and allowed us to’
fix Ng values ( for rain, for ice). In both studies, the aircraft
data were used to choose the type of precipitating ice particles,
which has to be fixed in the model: graupel of low density in
the NCFR case (type 1 from Locatelli and Hobbs, 1974) and
rimed aggregates in the rolls meso-scale circulation case (type
10 from Locatelli and Hobbs, 1974).

3. NCFR CASE STUDY

During the night of 12 to 13 January 1988 a cold front,
passed over the French experimental site of the
MFDP/FRONTS87 experiment (Bessemoulin er al. 1989).
The combined data of the dual-Doppler radar system
RONSARD have shown the existence of a narrow cold frontal
rainband (NCFR) associated with the cold front (Roux and
Hauser 1989). It was characterized by a rather two-
dimensional and time-steady structure. Consequently, the
retrieval model has been applied in a 2D-version to a vertical
cross-section perpendicular to the NCFR, and Egs. (1,4) have
been solved neglecting time variations. The domain studied is
16km long in the direction quasi-perpendicular to the cold
front and 4.0km high. The horizontal and vertical resolutions
are 400 and 200m, respectively. The wind and reflectivity
fields derived from the radars observations and used in the
retrieval model are shown in Fig. 2 where the X-axis is
perpendicular to the line joining the two radars, i.e. here,
quasi-perpendicular to the surface front. The wind field
depicts relative wind (calculated in a frame moving with the
NCFR). The observed updraft has a maximun intensity of
7ms-! and is located at about 1.2 km altitude. It induces the
formation of a high precipitation content region which



X (km)r -

Fig. 2: Wind field (arrows) and reflectivity field (isolines in dBZ) obs;rved
the 12 January 1988.

corresponds to high reflectivity values. Two weak downdrafts
are located behind and in front of this zone.

The retrieved precipitation field (qr+qg) (Fig.3a) is
characterized by a region of intense precipitation located just
behind the updraft. The results indicate that the most important
part of precipitation is formed by solid particles, i.e. graupel.
The growth of graupel is largely dominated by riming acting
in the updraft region where condensation is active. Graupel is
carried behind the updraft zone by wind and to the ground by
their own fallspeed. Rain observed at ground level is formed
through different processes: in the updraft region part of the
domain (8km<X<11km), liquid phase processes (accretion)
are the most important, whereas behind the updraft region rain
is formed from melting of ice precipitation.

Fig. (3a) can be compared to Fig. (3b) which Tepresents
the precipitation field directly derived from radar reflectivity,
using Z-qr and Z-qg relationships obtained from in situ
observations of particle-size distributions (aircraft and
disdrometer). A good agreement is found between the two,
with the same kind of structure and the same localization of
the region of maximum of precipitation. The order of
magnitude of the precipitation maximum is the same: 2.4gkg’!
given by the retrieval model and 3.0 gkg-! derived from

reflectivity. This good agreement indicates that the retrieval

4
a
1l
= Q.
o & /og/%;s"’§ =
E & @ ) @
T i~ 03 \
\ %
0 T T T T T T T T T T T T T T T

b
—~3
£
w ] 02206
h T IEAN %
; ~——03 OQ@;
1 */*"QJ = \\ )
\/\,\o‘,@o;
0 =T T LI | T T T T T T T T T T T
2 4 6 8 o1 % % 8

X (km)

Fig. 3(a-b). Precipitation content (g kg-1) (a) result of the retrieval model
(b) directly derived from radar reflectivity.
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model is well-adapted to the case studied here.

The temperature perturbations with respect to the pre-
frontal conditions are shown in Fig.(4). A cooling is found
nearly everywhere. This can be explained by two effects. In
the updraft region, it is due to the quasi-neutral state of the
prefrontal atmosphere: the latent heat flux due to
microphysical processes, particularly condensation which is
much greater than the freezing processes (rain freezing and
riming) (Fig. 5a), does not counterbalance the adiabatic
cooling; at the rear of the frontal discontinuity the cooling is
due to microphysical effects (precipitation evaporation and

f‘ig. 4: RcsuIt ;)f the retrieval model: potential temperature perturbations
(in K) with respect to prefrontal conditions.
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Fig. 5: (a) Warming rate due io 'freezing’ terms (rain freezing processes
and riming) in solid lines (in K h-1). The heavy contour conesPonds 1(1)
the 50 K h-1 warming rate due to condensation. Cooling rate in K Ly
due to (b) the evaporation of precipitation terms and (c) the meliing
terms.



“graupel melting). At ground level, the retrieved cooling of
about 2°C is consistent with ground-stations observations
(Fig. 6). This indicates that microphysical processes are
sufficient to explain the temperature gradient associated with
the frontal discontinuity, and that in the case studied here
large-scale forcing is quasi-inexistent. This last hypothesis
seems to be comfirmed by the radiosounding analysis
(Lagouvardos er al., 1992).

The most important processes leading to air cooling at
low levels are graupel melting (Fig 5b) and precipitation
evaporation (Fig 5¢). The cooling rate induced by these two
processes is of the same order of magnitude and acts
approximately in the same region. This is confirmed by the
results obtained with three different runs of the retrieval model
in which we suppressed in the resolution of the potential
temperature equation (Eq. 4) first graupel melting, then
precipitation evaporation and at last both processes. In all
these runs (Fig.7), a warming is observed at ground level
instead of the cooling actually observed.

Hence, this study has shown that microphysical
processes can play an important role on the thermodynamics
in a NCFR.
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Fig. 6: Ground temperature (in K) as a function of the X-axis recorded by
groun_d-stations 1 and 2 of the observational network of FRONTS 87
experiment and retrieved with the model.
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Fig. 7: Ground temperatare (in °C) as a function of the X-axis:

retrieved with different versions of the model: curve (A) reference case
‘(corresponding to fig. 4), curve (B) when the melting terms are omitted in
the thermodynamic equation, curve (C) when the evaporation of
precipitation terms are omitted, and curve (D) when both melting and
evaporation terms are omitted.

4. ROLLS MESO-SCALE CIRCULATION CASE
STUDY

In this part, the retrieval microphysical model has been
applied to a meso-scale wind field (Fig. 8a) associated with a
cloud band observed around 1820 UTC the 9 January 1988.
This wind field is relative to the large scale flow and has been
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obtained by combining the observations of conical scans from
the two Doppler radars RONSARD, using a method proposed
by Scialom and Lemaitre (1990). Note that small scale
motions (less than 15 km horizontally) are filtered out in this
circulation. The considered domain is 90 km long and 4.2 km
high. The vertical and horizontal resolutions are 0.35 km and
5 km, respectively. The wind field is caracterized by a rolls
structure moving with the large scale flow. The corresponding
observed reflectivity field is depicted in Fig. (8b). Three
precipitation structures can be identified: the NCFR associated
with the front (50km<X<60km), a wide cold frontal rainband
(WCFR) located in front of the NCFR (70km<X<90km) and
a convective cell aloft (Skm<X<25km).

The precipitation field structure does not seem to be
correlated with the wind field: the mesoscale updraft is
associated to a reflectivity minimum and high reflectivity
values do not correspond to ascent motions zones. This can be
partly explained by two reasons. It is likely that high
reflectivity values observed in Fig. (8b) are associated with
convective motions which have been filtered out in the wind
field determination. It is at least the case of the NCFR and of
the cell located aloft. The second reason concerns the WCFR.
Radar observations have shown that this precipitation band is
not stationary in the frame of the rolls circulation. It is
probable that precipitation in the WCFR is first created in the
meso-scale updraft region of the rolls circulation, then
intensified and horizontally advected into the downdraft region
located in the right-hand side of the domain. More radar
observations aloft before 1820 UTC are needed to confirm
this interpretation.

Lemaitre and Scialom (1992) have studied the dynamics
of the meso-scale rolls circulation (Fig. 8a). They found that
this wind field shows several characteristics predicted by the
CSI theory. Only one point differs from the CSI theory. It
concerns the downdraft region of the roll (in the left-hand part
of the domain here). Although it is predicted unsaturated by
the CSI theory, it appears nearly saturated according to the
radiosounding measurements. In the present study, the-
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Fig. 8: (a) Meso-scale wind ficld relative 1o Lhe large scale flow observed
the 9 January 1988 and (b) corresponding reflectivity ficld.



‘retrieval model has been applied for one main objective which

was to investigate the role of the microphysical processes in
the subsiding part of the roll. Can microphysical effects
explain the nearly saturated state of the air as suggested by
Clough and Franks (1991)' study?

The retrieval microphysical model has been applied to the
meso-scale rolls circulation (Fig. 8a). This wind field shows a
2D structure in the chosen frame so that the retrieval
microphysical model has been applied in a 2D version. No
observations before and after 1820 UTC are available.
Nevertheless, the rolls structure observed at 1820 UTC
corresponds to the development stage predicted stationary by
CSI theory. Hence, Egs. (1, 4) were solved neglecting time
variations.

Results from four different runs of the microphysical
model are analysed; In the first one (run 0), an ice
precipitation profile derived from reflectivity observations was
fixed at altitude 4.2 km between X=5 km and X=30 km. In
the retrieved relative humidity (RH) field (Fig. 9), air is found
inearly saturated in the downdraft region. Does RH depend on
ithe intensity of the ice precipitation flux and/or on the type of
ice-precipitating particles used in the model as suggested by
Clough and Franks (1991)? To answer this question, three
other runs of the model have been done. In the first one (run
1), we have set a constant flux corresponding to 5 mmh-1
between X=5km and X=30 km at 4.2 km altitude. Between
run 0 and run 1, RH has increased in the downdraft zone
(Fig. 9). When ice particles flux increases, evaporation and
consequently RH also increase (Fig 10). Below the 0°C level,
cooling due to melting acts by decreasing the saturation m. r.
and hence by increasing RH. This effect is more pronounced
when the precipitation flux is increased. In the two other runs,
graupel particles have been used in the model instead of rimed
aggregates. In run 2 (resp. run 3), precipitation flux at altitude
4.2 km is the same as that used in run O (resp. run 1). The
results (Fig. 9) show that RH is smaller when graupel

particles are assumed because evaporation is less active. This_
conclusion is consistent with the results obtained by Clough’

é — mn0
P g R 1
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Fig. 9: Altitude as a function of mean relative humidity (RH) between
X=5km and X=20 km (downdraft zone). The saturation mixing ratio is
calculated with respect to ice when temperatare less than 0°C and
otherwise with respect to water. The terms run 0, run 1, run 2 and run 3
are definied in the text.
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cooling rate (10 Ks )

Fig. '1('): /.\ltimde as a function of cooling rate in 10-3 K s due 1o ice
precipitation evaporation and melting. The terms run 0 and run 1 are
defined in the text.

.and Franks (1991). Hence, RH depends on the type of @cé
‘particles and of the precipitation flux imposed. The convective

cell located above the downdraft region of the roll probably
plays an important role in the maintenance of nearly saturated
conditions thanks to evaporation of ice precipitation and
melting.

5. CONCLUSION

This study has shown the potential interest of using
retrieval techniques for the study of interactions between
microphysics and thermodynamics in precipitation systemns.

Interesting results have been obtained in a case of NCFR.
We have shown that the cooling observed at ground can be
explained by microphysical processes: melting of graupel and
evaporation of precipitation. The cooling rate due to these two
processes is of the same order of magnitude.

The microphysical model has also been used to study the
effects of the precipitation falling from a convective cell in the
downdraft zone of a meso-scale circulation associated with
CSI. Evaporation of ice precipitating particles and melting (in
a lesser vertical extend) seem to allow the maintenance of
nearly saturated conditions in the downdraft region.
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SOME PECULIARITIES OF THE MESOSTRUCTURE OF FRONTAIL CLOUDS FIELD

S.M. Shmeter

Central Aerclogical Observatory,
Dolgoprudny, Moscow Region 141730,RUSSIA

The mesostructure of a frontal cloud
systems (FCS) depends on the large-scale
.flow +type and thermodynamical charac-
teristics. Mesoscale structure observed
~in FCS is always a combination of banded
and cell-like features (Hobbs, 1981; Sha-
kina, 1985; Bezrukova , Shmeter, 1989 ).
The latter may cover several tens of per-
cent of FCS' total area. The bands and,
especially, cells are characterized by
the local enhancement of micro- and meso-
fluctuations of wind and temperature as
well as a widespread vertical motion (w)
and associated cloud liquid water content
“(W). The resulting augmentation of preci-
‘pitation development (and therefore, of
precipitation dintensity) produces bands
and cells ("spots") in frontal precipita-
tion patterns. The mesoscale cloud
features dimensions do not mnecessarily

coincide with those of precipitation.
However, the dimensions, 1lifetime and
trajectories of cloud and precipitation

features can't differ considerably.

The studies of the structure and
evolution of cloud and precipitation
mesofeatures made it possible to draw a
number of conclusions. In particular, it
has been established +that the cells
present embedded Cu,Cb. They often form
clusters. Sometimes, cells are lining
up,with minor bands. and 1lines being
embedded into larger ones. The spatial
orientation of cell clusters and lines
mainly coincide with that of bands in
which they are embedded. That is why the
cloud lines, as a rule are approximately
parallel to surface fronts. The distance
betwegn theeadjacent precipitation cells

- ture studies,

, mesostructure over Buropean Russia,

formed, with +the distance between the
cells in along and across the front line
being almost equal (Bezrukova , Shmeter
1989; Bezrukova, 1991 ) Near cold fronts
_2nd occlusions the cells are moving both

with and along the bands in which they
are embedded.

Judging from precipitation mesostruc-
the larger the mesoscale
features within FCS are,the longer they
live. The larger bands endure for tens of

hours, while individual cells seldom
_survive for more than 1-1.5 hours ( ILiv-
shits 1989; Sergeev, 1991; Shmeter,1990).
Only large clusters live longer. Finally,
it 1is worth mentioning that bands and
cells precipitate havier than "pure" Ns
and As, due to a stronger uplifting and
larger 1liquid water content. Precipita-
tion forms not only in Cb, but also in Cu

- cong, because within Ns, As the latter is
less affected by entrainment, since the
entrained air is saturated. Rainfall from
cells contributes 20-40% to the total
rainfall amount near warm fronts and
occlusions and up to 60% near cold fronts
( Bezrukova , Shmeter ,1989). .
This paper summarizes the Central
Aeroclogical Observatory's studies of FCS
in
transitional and winter seasons. The
studies made use mainly of airborne data.

a. DIMENSIONS OF MESOSCALE
FEATURES WITHIN FCS.

Table 1 displays the airborne, satel-
lite and radar observational data avail-

is 107...107 km , while in a cross-front able on the dimensions £
direction it varies from tens to 150-200 fenbures within FCS. of mesoscale
km. Sometimes "regular" structures are
Table 1
Characteristics of bands and cells
within frontal cloud systems (FCS)
Dimensions km
Along-front Cross-front Spacing W oem/s
length width between adjacent
Bulk of FCS 1 -5.10° 1 -5.10° — 10%- 10’
Mesoscale cloud bands
including lines of 1 2 2 3
embedded convective 100 - 500 50 - 100 10 - 10 107- 10
clouds
Cells 5 - 40 5 - 40 109 - 10° 10~ 10°
100 - 200 100 - 200 10" - 1% 10%-10°

Clusters
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The vertical motion velocity was calcu-
lated from (1), using radar data on the
precipitating rate J at Z level

b. CELL: STRUCTURE

j W —-—-maxdz (1)
Z

where qma.xis maximum saturated mixing
ratio  within (ZO ., Z), P and W are

layer—-averaged air density and wvertical
velocity,respectively.
Fig.1 presents frequencies of indivi-

dual cells and clusters ione. : !
ua cer s and clusters dimension /4571 /ﬁ/ /.5“/0’
Fh
GG
2, 4 '
12228 12274 Ij"ig.e Profiles of wvertical pulsation
velocity (1), ligquid water content
(2) in embedded cloud cells (ECC)
and in their environment. Warm
front,Smolensk region,Dec.15, 1979,
Z2=2600m.
50 o
i A 1 1 |.-—- 5 E A L L i,
a 20 ¥0 60 88 779 .510!530254"%

~1=‘zi_g1 —ff;aﬁency of 6cdurfeﬁc; 6f_c"lxisters
: (a) and cells (b) dimensions. n -
number of cases.

In majority of cases, the longer the :
bands, the wider they are. Due to the !

scarcity of data, figures given in Table i
1 and Fig.1 are approximate, with the
largest distortions reffering to the
smallest cells. Judging by individual
measurements, the depth of the cells in U =20
winter and transitional seasons reaches :

several km ( see Table 2). In summer,

the cells are deeper than in other seca- sl

sons. Thus, the tops of Cu,Cb are often ‘

doming above the wupper deck of Ns,As, L. 42 )

while din winter +they are entirely VA L U,
embedded ( Brylev et.a2l,1989 ). The mean 4

annual maxzimum height and the standard e

deviations of vradar echo ‘tops are Fig.3  Variations of E_within EGC on
4.4+0.96 km for convective cells and October 27,1969,S‘n%feropol—xrasno_
5.5£0.50 km for As. The cells may be dar region, Z=300m. 1, - width of
based in the lower, middle or upper por- zone with increased lE (B F.Ev-

tions of Ns,As. teev,private communicat

Table 2
Average values (ﬁ) and standard deviations (UH)
of radar echo top height over the Furopean Russia.
ECC - embedded convective cell

ECC As,Ns

Ekm Okm number of cases I—Ilatz Okm number of cases

Summer 6.4 2.1 797 5.6 2.0 310
Winter 4.2 1.9 542 ] 4.3 1.8 1833
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WMFig.2,3 show the typical horizontal

distributions of liquid:

water content (W), vertical pulsation
velocity (w'), and vertical component of
electric f£ield strength (EZ) within

embedded convective cells (ECC). It can
be seen that within ECC, W , w' and Ez

values grow drastically. Within ECC, the
mesoscale uplifting velocity (w) and SZ
are by 10-100 and 3-~4 orders of magnitude

greater, respectively, than those in the
adjacent portions of Ns, As, So, the

distribution of meteofdlogical'péfémetersA
within ECC is similar to that observed in,
Cu cong, but unlike Cu, which are not,

encountered at middle latitudes in,

winter, ECC occur all the year round.

They cause the winter thunderstorms.
Table 3 gives root mean-square velocity|

pulsations ( Gw), coefficient turbulence

( K ), and the rate of dissipation of
turbulent kinetic energy {( £ in ECC and
Ns, As. The bar denotes averaging over
the bulk of realizations and the index
"max" indicates the maximum value of the
relevant characteristic. The methods of

0, +€5 and R calculations are described
Py:Shmetgr (<Shmg3§r,j990).
3/2 s/2
£ =0d.8S (R) R
W WWV

1
where R = % 1is a wave number , Q ~ 35.3

[v4]
5, (R)= 2[cos (2MRDR, (E) dE
0

is the vertical pulsation spectral den-:
sity, R_ is the autocorrelation funciion.

The turbulence characteristics for ECC
( as well as £_) were found 1to be very
close to those in Cu cong.

The energy spectra for both ECC and Cu
cong have shown a "plateau" or a local
maximum at %the wavelength A=600-800m.
This reveals a source of turbulent kine-
tic energy at the aforementioned A ,which:

is 1likely %o be caused by convective’

updrafts, responsible for cells forma-
tion.

Vertical and horizontal pulsations’
distribution functions in spatially homo-

geneous portions of Ns, As obey a normal
law, while within ECC they are described
by the sum of 3 normal distributions.
with wvarious dispersions. The latter ap--
parently manifests the presence of pul-
sations of different nature within ECC
(Mazin , Khrgian Eds., 1989 ).

The formation and evolution of bands
and cells have been studied inadequately.
The present day understanding of this
problem is as follows. A very stable
stratification produces a spatially homo-
geneous layer of frontal Ns . As. The
vertical lapse rate ( Y ) in FCS,which is
less thanothe moist adiabatic one (7. ) by
0,1...0.2°C/100m , causes ang internal
gravity wave with A~10"...10° m. The
waves are induced by periodie oscilla-
tions at the rate of the latent heat
release resulting from precipitation par-
-ticles growth and deposition out.The most’
intensive cloud development occurs in the
wave crests, thus forming a banded struc-
tureﬁ; e S

If7 > Tm seither a cell-like or banded
.convection emerges. These conclusions are
valid for fronts of all +types , but the
exact form of mesoscale features also
depends on the characteristics of wind
field deformation (Sergeev,1991).

If a strong frontal barocclinicity is
present the bands are formed due to the:
realization of a large-scale baroclinic
‘instability ( slantwise convection ). As!
parameters of the bands formed by waves:
and baroclinic dinstability are often
similar ,it 4is difficult to dinfer the:
physical machanism of a given band forma-
tion, only using observational evidence.

The cells are formed by elevated con-
vection. Their emergence within FCS is
‘facilitated by the fact that 7 within Ns,
As 1is very close to _a moist adiabatic
one (7 _).The values of Y7 in frontal Sc,Ac
are st?ll greater .Even spatially averaged
T is equal or greater than in more
than 50% of cases ( provided that FCS
temperature is below zero ) (Mazin,
Khrgian,Eds.,1989). In some FCS portions,
T>>7 .

Lo%al convectively unstable layers are
often produced by the interpenetration of
mesoscale tongues of cold and warm air
through the frontal surface ( Bezrukova ,
Shmeter , 1989 ). Such tongues are seve-
ral tens of km long and hundreds of
meters deep. If a cold tongue overrumns a
warm one , thus forming a convectively
unstable layer. Such process may develop
at several levels, resulting in multi-
Jlayered ECC.

Table 3

Characteristics of turbulence within embedded cloud cells

(ECC) and in Ns,As in transitional and winter seasons

over European

Russia (Shmeter, 1990)

Height, Number of O o K K ) 3
km cases w W max max 2,3 mgx
m/s m/s m /s m /s m /s~ em>*/
Ns,As 1.0 - 6.3 85 0.21 0.67 12.7 50.7T 3.8 98.
ECC 1.0 - 2.7 58 0.42 1.15 26.5 T4.4 27.5 309..
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STRUCTURE OF MESOSCALE SNOW BANDS OVER THE SEA OF JAPAN

Y. Yamada, T. Matsuo, M. Murakami, and H. Mizuno

Meteorological Research Institute, Tsukuba, Ibaraki 305, Japan

1. INTRODUCTION

In winter monsoon season, "sea-effect snow clouds”
develop over the Japan Sea as a result of modification
of cold air mass passing over the warm sea surface.
These clouds produce much snowfall in coastal
regions facing the Japan Sea. They sometimes do
serious damage to regional activities and economics.

Several observational studies of "sea-effect snow
clouds” have been made so far about airflow
structures in the clouds using a single Doppler radar:
for example, Ishihara et al. (1989) described the air
flow pattern in the snow bands induced by land-sea
breeze circulation, and Sakakibara et al. (1988)
revealed a flow structure in some clouds similar to
that in a tropical squall line. Ikawa et al. (1987), on
the other hand, theoretically simulated the clouds
using a two-dimensional numerical cloud model with
microphysical processes.

Similar snow clouds, well known as "lake-effect
snow clouds" around and over the lake Michigan,
have been extensively studied by observations with a

single Doppler radar and numerical models (Kelly,
1982; Braham, 1983; Hjelmfelt, 1983; Hsu, 1987).
Recently, Kristovich (1990) reported a dual-Doppler

radar observation of "roll-convection” over the lake
Michigan combined with aircraft observations.

Although the above studies provided good
information on air flow structures in the "sea-effect
snow clouds”, there still remain some problems
unsolved on three-dimensional structures of various
"sea-effect snow clouds" because of a limitation of a
single Doppler observations. Dual-Doppler radar
observations combined with specially designed drop
sondes were carried out in the winters of 1989-1992 on
the western coast of the Tohoku District of Japan in
order to investigate the three-dimensional structures
of the "sea-effect snow clouds”. This paper describes
mesoscale structures and maintenance mechanisms of
the snow clouds, and presents conceptual models of
some clouds.

2. RADAR OBSERVATIONS AND DATA PROCESSING

Dual-Doppler observations were carried out using
two X-band Doppler radars. The detection range of the
radars was 64 km. In 1989 the vertical resolution was
rather low because the rotating speed of antenna was

slow at 1 rpm for the two radars. After that, the
rotating speed of antenna was increased to 2 rpm for
one radar and 3 rpm for the other so that the vertical
resolution has improved since 1990. During the
period of 1989-1992, the data acquisition time for one
sequence of the dual-Doppler observation was several
minutes.

The raw radial data were interpolated onto common
grids. The grid spacings are 1 km in the horizontal
and 0.5 km in the vertical direction with the lowest
level 0.8 km ASL in 1989, while in 1990, 0.8 km in the
horizontal and 0.3 km in the vertical direction with
the lowest level 0.6 km ASL (hereafter all levels are in
ASL). The vertical winds were calculated by
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integrating the anelastic continuity equation upward
assuming w=0 at the sea surface. Although it is
common in the dual-Doppler technique that the
vertical winds are adjusted by variational methods (
Ray et al.,, 1980; Chong and Testud, 1983), no
adjustment has been made in these cases because a
software is not available at present.

3. RESULTS OF OBSERVATION

Several types of snow clouds were identified from
the radar observations and they usually appeared in a
form of band, typically 3 km deep and persisting for
several hours. The two types of the snow cloud bands,
oriented parallel (L-type) to and perpendicular (T-
type) to the prevailing northwesterly surface wind,
will be discussed below.

a. L-type band

Several L-type bands, about 50 km long and 10 km
wide, appeared on 10-11 Feb. 1989. They almost alined
parallel to the prevailing northwesterly surface
wind. The synoptic situation was favorable for
development of snow clouds: a high over the Siberia

Continent and a low over the Pacific Ocean. The
precipitation intensity was 1-4 mm/hr in water
equivalent and graupel was dominant around the

radar site.

Shown in Fig.1 is the aerological data of Akita at
2100 JST on 10 Feb., 100 km north of the MRI
(Meteorological Research Institute) radar site. The

environmental wind direction changed slightly with
height between the surface and 800 hPa. The
environmental air stratified convectively unstable

below 1.5 km level.

Figure 2 shows the horizontal system-relative
airflows and the reflectivity fields at the levels of 0.8
and 1.8 km from the dual-Doppler observations. The
band was in the mature stage, and it moved
southeastward at a speed of 8 m/s. At the 0.8 km level,
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Fig. 1 Vertical profile of potential temperature (thin
line) and equivalent potential temperature (thick

line) of Akita at 2100 JST on 10 Feb. 1989. A full barb
‘denotes 10 knots.



the overview of the horizontal divergence fields is

that convergence and divergence exist, respectively,
at the northeastern edge and at the southwestern
edge, suggesting upward and downward air motion
existing there. The magnitude of the horizontal
convergence was greater at the lower levels, say

around 3x107> s The flow pattern was characterized
by the ascending inflow around the northeastern
edge and the descending outflow around the

southwestern edge of the band. At the 1.8 km level,
the flow pattern bears a resemblance to that at 0.8 km
level, though vertical air velocities are greater.
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Fig.2 System-relative horizontal airflow and

reflectivity fields in the band at 0.8 km and 1.8 km
levels at 0046 JST on 11 Feb. 1989. Wind arrows are
drawn every two grids. Location of the vertical cross
section in the Fig. 3 is also shown. Thin solid lines are
contours of reflectivity at 5-dBZ. intervals.
Reflectivity values exceeding 30 dBZ. are hatched. At

0.8 km level, thick solid and dashed lines are,
respectively, contours of horizontal convergence and
divergence at 1x10°3 5! interval. At 1.8 km level,
Thick solid and dashed lines are, respectively,

contours of positive and negative vertical air velocity
at 1 m/s interval .
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The circulation in the vertical cross section
perpendicular to the band orientation is shown in Fig.
3. From the northeastern edge, the convectively
unstable air flows into the band as updraft.  Around
the southwestern edge, on the contrary, the
downdrafts originated around the middle-level enter
the band and then flow out around the southwestern
boundary at the lower Ilevels. The magnitude of
vertical motions are several meters per second.

A conceptual model of the structure of the L-type
band can be deduced from the above results (see Fig.
4). The circulation in the band demonstrates a typical
long-lasting updrafi-downdraft couplet: the inflow of
unstable air outside the band continuously ascends
over the cold downdraft. The cold air created by the
downdraft seems to play an important role on
maintenance of the band, although no in-situ
observation was made of the thermal structure in and
around the band. The cold air would be continuously
supplied around the sea surface by evaporative
cooling of snow particles falling in the downdraft.
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Fig. 3 Vertical cross section along the A-A' line in
Fig.2.  Reflectivity contours are indicated at 5-dBZ¢
intervals. Horizontal wind vectors indicate system-

relative winds.
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Fig. 4 A conceptual model of a L-type snow band.
The air flows are relative to the system mortion.

b. T-type band

A T-type band, about 100 km long and 20 km wide,
appeared following the passage of an extratropical
cyclone on 12 Feb. 1990. The band sometimes appears
in the winter monsoon, but not common. It moved
east-southeastward at a speed of 13 m/s. Radar
reflectivity depicted that the band was consisted of
iwo or three band-like echo regions aligned parallel
to the band orientation; hereafter we refer to these
echo regions as “subbands". The surface wind
analysis on that day at Tobishima Island, 30 km off

shore, suggests that the band was associated with a
convergence zone in large scale. Wind speeds
drastically increased from 8 to 16 m/s after the

passage of the band, while the surface wind directions
hardly changed from west-northwest. The



environmental wind measured at Akita is shown in
Fig. 5. The wind changed the direction with height
from west-northwest at lower levels to west-southwest
at 700 hPa. The precipitation intensity at Tobishima
was very weak, lmm/hr in water equivalent and
graupel was dominant.

Figure 6 shows the vertical profiles of equivalent
potential temperatures in and outside of the band,
measured by meteorological drop sondes. The
observation of the outside was made 90 km west of the
MRI radar. The thermal field is characterized by
colder air inside and unstable air outside of the band
in the lower layer.

Horizontal wind fields relative to the system motion
and the reflectivity fields are shown in Fig. 7. Here
we will describe only the features of the subband 1
situated around the trailing edge of the band because

the subband 2 had similar features to it. At the 0.6 km
level, horizontal convergence exists around the
trailing edge, and divergence is situated in the

forward portion of the subband. The system-relative
wind fields are, therefore, characterized by the
ascending low-level inflow around the trailing edge
and outflow of downdraft in the forward portion of
the subband. Similar pattern is also seen at 1.8 km
level. The TV-drop sonde observation was also carried
out around (x,y)=(-50 km, -39 km) at 1451 JST.
Although the dropping position is situated a litile
beyond the limitation of dual-Doppler processing, the
PPI display of the radar indicated that the position
was inside of the subband with reflectivity values 20-
25 dBZe. Plenty of supercooled droplets were observed
in the band.

Figure 8 shows a vertical cross section
perpendicular to the band orientation. The line
crosses a matured cell embedded in the band. This
circulation was found to take place in most of area in
the subband. From the trailing edge, the air {lows
into the band as updraft. The downdraft originated
around the middle-level exists in the forward portion.
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Around the trailing edge of the band at middle- and
higher levels, there exists a reverse flow toward the
trailing edge with relatively weak updraft.

A conceptual model of the subband in the T-type
snow band is illustrated in Fig. 9. The inflow of
unstable air from the trailing edge ascends over the
cold air on the sea surface. The vertical air velocity is
about 2 m/s. In the forward portion the downdraft
originates around the 1.8 km level and then flows out
of the subband at the lower levels. As the cold air on
the sea surface are continuously supplied ahead of the
subband by the downdraft, the inflow is free to ascend
over it. The surface observations of snow particles at
Tobishima supports the conceptual model: at first
‘graupel was observed and then precipitation changed
to snowflake as the band passed. Probably the
graupel grows in the updraft in the forward portion
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of the subband, and the snowflake is formed in the
relatively weak updraft around the trailing edge.

5. DISCUSSION

Both types of bands, L-type and T-type, have long-
lasting updraft-downdraft circulations with
preferable thermal structures: convectively unstable
air ascends over the cold air on the sea surface in the
band, and the downdraft originated around the
middle-level falls down being cooled by evaporation
of graupel or snow. It spreads out on the sea surface
and makes a cold pool. This contrast between the
unstable warm air and the cold air around the sea
surface seems to be important for the maintenance of
the

band. The existence of the contrast was
successfully confirmed in the observations of 1991
and 1992,

In general, with respect to the difference in

configuration between L-type and T-type, vertical
wind shear is likely to be important although the
large scale convergence may affect in part its

configuration in the T-type case. In fact, the vertical

shear was significantly different between the L-type
and the T-type: wind direction changed less with
height for the L-type than for the T-type. Since the

cold downdrafts originate at middle- and higher levels
and transport the momentum at that level toward the
lower levels, the interaction in the lower levels
between the ambient air and the downdrafts becomes
important. The style of the interaction, associated
with vertical shear, would determine the
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configuration of the bands.

Another different types of bands were observed in
1991 and 1992. Their airflow structures were
significantly different from those described in this
text. The results of the analyses are reserved for the
future paper.

6. CONCLUSION

Two types of snow bands, L-type and T-type, were
analyzed from the data of duval-Doppler radars and
special drop sondes. Based on the results, the
conceptual models are presented.  Circulations in the
snow bands, both L-type and T-type, are long-lasting
types with temperature contrast at the low levels
between the unstable warm air outside and the cold

air inside. This contrast is considered to be important
for maintenance of the snow bands. It is also
suggested that the vertical wind shear is important

for the band configuration.
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MESOSCALE RAINBANDS IN CYCLONIC STORMS OF NORTH CHINA

Peng-Yun Wang! and Zi-Xiu Xu
Chinese Academy of Meteorological Science,
Beijing, People's Republic of China

1. INTRODUCTION

It is well known that mesoscale rainbands are
common and that they make a considerable contribution to
precipitation in midlatitude cyclones (e.g. Hobbs, 1978;
Browning, 1986). Studies over the past two decades in the
Beijing area of North China show that the basic
characteristics of mesoscale rainbands are similar to those
described by Hobbs (1978) for the Pacific Northwest of the
United States. However, since the Beijing area is located on
the eastern side of Eurasia, and on the western coast of the
Pacific Ocean, many of the fronts passing through this
region have been affected by the topography of the
continent. Thus, their structures and organization are
sometimes more complex than those observed in the west
United States and Britain. A brief description of our
findings is given below.

2. MAJOR CHARACTERISTICS OF THREE TYPES OF
RAINBANDS

a. Cold-Frontal Rainbands

Two types of cold-frontal rainbands are often
associated with cold fronts. One is the narrow cold-frontal
rainband. These bands are about 200-400 km long and 10—
20 km wide. The surface cold front is generally located
along the narrow cold-frontal rainband. However, an
exceptional example is shown in Fig. 1a in which a narrow
band was located about 16 km behind the surface cold front.
It arrived 65 mins after the surface cold front passed. The
band was associated with the steep edge of the cold air mass
at upper levels, but the surface cold front (defined by wind
shear and temperature decrease) was located along the
leading edge of the cold air mass.

Wide cold-frontal rainbands have widths generally
greater than 50 km, and are generally located behind the
surface cold front. Although they may appear to consist of
homogeneous stratus precipitation, they actually contain rain
clusters.

b. Warm-Sector Rainbands

Warm-sector rainbands are situated ahead of most
surface cold fronts, especially when there is a cold low to
the west and a blocking high to the east. Xu and Wang
(1989) observed warm-sector rainbands ahead of thirty-three
cold fronts. About 50% of these bands were oriented
parallel to the cold front and moved in same direction as the
front (Fig. 1a). The bands were one hundred to several
hundreds of kilometers long and tens to a hundred
kilometers wide. The average distance between the bands
was ten to tens of kilometers, with a maximum spacing of
100 km. Many case studies showed that the warm-sector
rainbands originated 10-20 km ahead of the surface cold
front. Single convective cells first appeared near the front,
then, within 10-30 mins, banded echoes formed and moved
forward faster than the cold front. They typically
propagated forward as younger, more convective bands
formed ahead of older, less convective bands.

1yisiting Scholar, Department of Atmospheric Sciences,
University of Washington, Seattle.
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Fig. 1 Three types of warm-sector rainbands based on PPI
scopes taken with a C-band weather radar at Beijing on (a)
22 July 1985, (b) 18 July 1980, (c) 18 July 1979. The
range markers are at intervals of 100 km in (b) and 50 km in
(c); the radar echoes are contoured at 20 dB(Z) in (a), and 0
dB(Z) in (b) and (c), with shaded areas representing 30 and
40 dB(Z) in (a), and 30 dB(Z) in (b) and (c). The surface
cold fronts are from synoptic analyses.

The other 50% of the warm-sector rainbands form
either at an angle to the cold front (Fig. 1b) or perpendicular
to it (Fig. 1c). The former were generally at an angle of
309-60° to the cold front. They were typically tens to two
hundreds of kilometers long, ten to tens of kilometers wide,
and spaced 1050 km. The frequency of this type of band
was about 36%. The bands as a group move together at a
similar speed to the cold front. Radar observations indicate
that the cells in these bands originate at the surface cold
front. New cells that form on the front move downwind
with the wind velocity at mid- and low- levels ahead of the
front. Cells farthest from the front are older than those near
the front.

The third type of warm-sector rainband is
perpendicular to the cold front dnd they move in a different
direction from the front. Rainbands of this type generally



contain 2-6 sub-bands. The frequency of this type of
rainband is about 14%. The bands are tens to one hundred
kilometers long, and ten to tens of kilometers wide. This
type of band does not originated on or near the front.
Instead it is associated with mesoscale interactions of warm
and wet airflows from the ocean. The bands sometimes
have an arc shape, which reflects cyclogenesis in the region.

¢. Warm-Frontal Rainbands

Since the cyclonic center is often located north of
459N in North China, warm-frontal rainband are seldom
observed in the Beijing area. Only when the Hetao cyclone
moves from the northwest into the North China Plain, or
there is cyclogenesis, are warm-frontal rainbands observed.
Figure 2 shows an example of such a band.

F 0
Beijing

Fig. 2 Warm-frontal rainband observed at Beijing at 1454 Z
on 6 July 1990. The shadings are the same as in Fig.1 (a).

3. SUB-STRUCTURES OF RAINBANDS
a. Cells on Rainbands

All of the rainbands discussed above consist of cells.
The cells have their own life cycle. New cells form as older
cells dissipate. In the case of warm-sector rainbands that are
oriented parallel to and at an angle to the cold front, the cells
move forward with the band, but they also move along the
band. Therefore, the rainfall produced by these band
depends on the motion of both the band and the cells.

b. Cyclogenesis on Pre-Existing Rainbands

When cold fronts move from the mountains of
Northwest China down into the North China Plain,
cyclogenesis sometimes occurs on pre-existing bands.
These new cyclones generally dissipate quickly. Sometime,
however, they develop into a local cyclone and produce
heavy rainfall. For example, a new cyclone developed on
warm-sector rainband shown in Fig. 3, it produced 75 mm
of rain in 24 hours in Beijing.

¢. Reformation of Rainbands

‘When rainbands associated with a cold front move to
the east coast of China, they may be blocked by high
pressure to the east, and therefore slowly dissipate.
However, if there is a transformed tropical depression of a
typhoon moving up toward the north, the rainband may
reform along the previous location of the dissipated
rainband.
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Fig. 3 Sketches from a satellite photograph on 1 August
1990 (a) 1730 Z and (b) 2030 Z. The dotted and hatched
areas represent cloud top temperatures from —20° to —40°C
and —600 to —800C, respectively.

4. SYNOPTIC ANALYSES
Xu (1977 and 1981) and Wang and Yu (1989).

.investigated the synoptic situations associated with the

formation of warm-sector rainbands in the Beijing area.
They found that a "cold low to the west and a blocking high
to the east" is the major synoptic background for the
formation of warm-sector rainbands. Warm-sector
rainbands are often associated with the mesoscale shear lines
in front of cold fronts. The convergence of two mesoscale
shear lines can produce a significant strengthening of the
rainband and at their connecting point there may be severe
convective weather. Gravity waves, caused by the
acceleration of cold fronts as they move from the mountains
area to the west into the North China Plain, may stimulate
the formation and development of mesoscale rainbands.

5. DIAGNOSTIC ANALYSES AND NUMERICAL
SIMULATIONS

Xu and Wang (1989) and Wang et al. (1990) studied
the three types of warm-sector rainbands and showed that
the parallel, angular and perpendicular types were associated
with symmetric instability, Kelvin-Helmboltz instability and
vertical shear instability overturning, respectively.
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FRONTAL TOPOGRAPHY AND PRECIPITATION

John D. Locatelli, Jonathan E. Martin and Peter V. Hobbs

Atmospheric Sciences Department, University of Washington, Seattle, Washington 98195

1. INTRODUCTION

Several theories have been proposed to explain
rainbands in extratropical cyclones (e.g. Bennetts and
Hoskins 1979; Matejka et al. 1980; Emanuel 1983; Parsons
and Hobbs 1983; Sanders and Bosart 1985; Locatelli and
Hobbs 1987; Moore and Blakely 1988; Knight and Hobbs
1988). In this paper we will show that, for at least one wide
cold-frontal rainband, the velocity of the frontal surface and
topographical features on this surface were closely related to
the movement of the rainband and its sub-structure.

2.  OVERVIEW

Four hours after a surface cold front passed eastward
over Cape Hatteras, North Carolina, on 26 January 1986 a
wide cold-frontal rainband (WCFR) passed through a region
of dual-Doppler radar coverage adjacent to Cape Hatteras.
This coverage was provided by the NCAR CP-3 and CP-4
Doppler radars, which were part of a larger array of
instruments deployed for the Genesis of Atlantic Lows
Experiment (GALE).

Figure 1 shows the area over which reflectivity data
were available from the dual-Doppler radars, and the region
(90 km x 36 km x 9 km) in which three-dimensional wind
fields could be derived from the dual-Doppler radars. The
insert in Figure 1 shows the WCFR (defined by the 31 dBZ
contour at 1 km altitude) and the surface cold front at
approximately 0045 UTC 27 January. The WCFR was
located 120 km behind and parallel to the cold front.

In common with other WCFRs (e.g. Hobbs et al.
1980) the WCFR depicted in Figure 1 had internal
substructure. The smallest and strongest elements of this
substructure, which we refer to as "precipitation cores”
(Hobbs and Locatelli 1978), are denoted by the letters X and
Y in Figure 1. The velocity of the precipitation cores was 30
m s+ toward 13°. We will refer to larger, organized
elements of the rainband as "sub-bands".

3. MESOSCALE STRUCTURE

Shown in Figure 2 is a vertical, time-space, cross
section of temperature, equivalent potential temperature (8¢)
and winds in the region of dual-Doppler radar coverage. A
sloping region of increased stability is evident by the vertical
gradient of the 6, lines. In this same region there is a sloping
region of backing winds with height and a decrease in the
horizontal temperature. We conclude that this region is the
elevated cold-frontal surface; the top of this zone is the cold-
frontal surface, which is marked by a heavy dashed line in
Figure 2.

We can also objectively locate the cold-frontal zone by
calculating frontogenesis values given by:
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where, x is the west-east direction, u the wind velocity in this
direction, and w the vertical air velocity.

Shown in Figure 3 are the values of F in an east-west
cross section, located at 12 km in the south-north direction.
This cross section of F is similar to all other cross sections of
F within the region where winds were derived from the dual-
Doppler radar data. The top of the zone of positive
frontogenesis is marked with a heavy dashed-dot line in
Figure 3. A comparison of Figures 2 and 3 show that the
zone of positive F corresponds closely to the cold-frontal
zone defined previously.

Figure 4 shows a cross section of the wind relative to

the velocity of the precipitation cores. The heavy solid line in
Figure 4 is the center of the region where the total horizontal
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Fig. 1. Radar reflectivity values for the wide cold-frontal
rainband (WCFR) at an altitude of 1 km at 0045 UTC 27
January 1986. The dashed rectangle shows the region over
which winds were derived from dual-Doppler radars.
Precipitation cores within the WCFR are designated by X and
Y. Sub-bands are the south-north oriented regions defined
by the 33-35 dBZ level. The inset shows the rainband
. (shaded area) relative to the position of the surface cold front.
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Fig. 2. Time-space cross section of equivalent potential
temperature, B (solid lines, labeled in degrees Kelvin),
temperature (dashed lines, labeled in degrees Centigrade),
and winds (conventional symbols) in the region where winds
were derived from the dual-Doppler radars. The locations of
the radiosondes (HAT = Cape Hatteras, NC; MRH =
Morehead City, NC) are indicated by the heavy arrows. The
heavy dashed line is the top of the cold-frontal zone defined
by wind shear, temperature gradient and 6.
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Fig. 3. Frontogenesis values (F) across the rainband in an
east-west vertical cross section located at 12 km in the south-
north direction at 0045 UTC 27 January 1986. The heavy
dashed-dot line is the top of the layer of positive
frontogenesis.
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Fig. 4. Vector airflow relative to the velocity of the
precipitation cores in an east-west vertical slice located at 12
km in the south-north direction at 0045 UTC 27 January
1986. The heavy dashed-dot line is at the top of the layer of
positive frontogenesis; the heavy dashed line is the top of the
layer defined by wind shear, temperature gradient and 6g; and
the heavy solid line shows the region along which the winds
derived from the dual-Doppler radars were closest to the
velocity of the precipitation cores.

wind (as derived from the dual-Doppler radar measurements)
was less than 2 m s™! relative to the velocity of the
precipitation cores. This line divides the cross section into
an upper region of rising westward airflow from a lower
region of sinking eastward airflow. Also shown in Figure 4
are the positions of the cold-frontal surface from Figure 2
(heavy dashed line) and Figure 3 (heavy dashed-dot line): all
three lines are similar in shape and position.

Similar computations for the whole region in which
winds were derived from the dual-Doppler radars produced
an undulating surface on which the winds had a similar
velocity to the precipitation cores; we take this to be the cold-
frontal surface. This cold-frontal surface is shown in Figure
5a; it is steeper toward the east, but it also contains smaller
regions of even steeper slope toward the south-east.

Shown in Figure 5b are three vertical cross sections
through the rainband oriented in the east-west direction.
Pronounced regions of higher radar reflectivity are located at
the eastern portion of each cross section, where fallstreaks of
precipitation particles were descending from aloft.
Comparing Figure 5a with 5b, we see that the WCER formed
in the region where the slope of the cold-frontal surface was
large. Also, the steeper the topography of the cold-frontal
surface the stronger the fallstreaks. All of the other cross
sections through the rainband showed the same
correspondence between radar reflectivity, fallstreak strength
and steepness of the cold-frontal surface.

Shown in Figure 5c are vertical air velocities derived
from the dual-Doppler data. A comparison of Figure 5a and
5c shows that the steeper the slope of the frontal surface the
greater the vertical velocity of the air in the upper regions of
the fallstreaks. This explains why the radar reflectivity and
the fallstreaks were greater in the regions of greater frontal
slope.



4. MOVEMENT OF THE RAINBAND

Shown in Figure 6 are a series of radar reflectivity
patterns for the WCFR. The series is aligned along the thin
horizontal lines that pass through two of the precipitation
cores. The result of such an alignment is to view the time
evolution of the WCFR from the perspective of these
precipitation cores.

The WCFEFR was composed of groups of precipitation
cores and sub-bands (labeled A, B and C in Figure 6). For
example, sub-band A decreased in strength as sub-band B
developed to the east of it. Similarly, sub-band B decreased
in strength as sub-band C developed, all within 30 min. The
net result was that speed of the WCFR was greater than the
band-normal speed of either the precipitation cores or the sub-
bands. For example, as sub-band B developed between
0022-0052 UTC on 27 January, it moved northward faster
than the speed of the new precipitation cores that formed on
its northern edge.

5.  MOVEMENT AND GENERATION OF THE
PRECIPITATION FEATURES IN RELATION TO
FRONTAL TOPOGRAPHY

In Section 2 we showed that the precipitation cores
within the WCFR moved with the same velocity as the winds
on the frontal surface. We also showed that the WCFR was
located beneath a region of the frontal surface that had a
relatively steep slope, and that the steepness of the frontal
surface affected the strength of the updraft above and along
its surface and the resulting radar echo strength. The sub-
bands within the WCFR were associated with smaller scale
and steeper regions on the frontal surface, and the
precipitation cores were associated with still smaller scale and
even steeper regions of the frontal surface. Hence, the
movement and generation of the WCFR, and its sub-bands
and precipitation cores, are simply explained by the
movement and evolution of the frontal surface and
"topographical” features on this surface.

Figure 7 illustrates these points. Here, a portion of
the cold-frontal surface is depicted with regions of varying
steepness. The steepest regions produce precipitation cores,
the next steepest produce sub-bands, and a region of
somewhat less steepness defines the rainband itself. This is
because the warm air flowing toward the frontal surface
(black and hatched flat arrows in Figure 7) is lifted at a rate
proportional to the steepness of the frontal surface. If the
frontal topography moves at the velocity of the frontal surface
(3-D arrow in Figure 7), the precipitation cores and sub-
bands will also move at this velocity (cross-hatched flat
arTow).

Figure 4 shows the warm, westward moving air
rising above the cold-frontal surface. This implies the front
acted as a barrier to the warmer air ahead of it. The 8¢ pattern
in Figure 2 shows that a parcel of warm air moving toward
the cold air beneath the frontal surface could not have easily
penetrated this surface, because the potential temperature
differences would force it to rise. The speed of the wind in
the east-west direction, eastward of the dashed box in Figure
1, was computed from the 0000 UTC 27 January Nested
Grid Model initialization using a weighted average of the
three closest 700 mb model data points. This was subtracted
from the speed of the frontal surface, giving a relative speed
of 3 m s-1 toward the frontal surface. The resulting vertical
velocity was calculated at 12 km south-north in the box by
assuming that w = —v;Vh, where v; is the relative air