			ICCF	P-2016	Confere	ence Se	ssions -	At a Gla	ance			
	Sunday 24th		Monday 25th		Tuesday 26th		Wednesday 27th		Thursday 28th		Friday 29th	
Start			Renold C16	Renold C2	Renold C16	Renold C2	Renold C16	Renold C2	Renold C16	Renold C2	Renold C16	Renold C2
08:30			Opening +	Welcome								
08:45 09:00											S6	
09:00					S13 (I)	S14 (II)	S8 (I)	S7 (I)	S2 (I)	S3 (I)	30	S4 (I)
09:30			Mason	Session								
09:45											S9 (I)	
10:00			Coffee	Break	Coffee	e Break	Coffee	e Break	Coffee	Break	Coffee	Break
10:15 10:30												
10:30												
11:00												C4 (II)
11:15			S16 (I)	S1 (I)	S13 (II)	S14 (III)	S8 (II)	S8 (II)	S2 (II)	S3 (II)	S9 (II)	S4 (II)
11:30			310 (1)	51 (1)	515 (11)	514 (iii)	50 (II)	56 (11)	52 (II)	55 (II)	55 (11)	
11:45												
12:00 12:15												S11 (I)
12:30												
12:45			Lunch	break			Lunch	break	Lunch	break	Lunch	break
13:00			Lunch	DIEak	Lunch brea		Lunch	DIEak	Lunch	DIEak	Lunch	DIEak
13:15					lun	ich)						
13:30 13:45												
14:00												
14:15			Poster s	ession 1	Destar	anaian 2	Poster s	session 3	Poster s	ession 4	S9 (III)	S11 (II)
14:30		I			Posters	ession 2						
14:45						[
15:00 15:15											Concludin	g remarks
15:15	E				S13 (III)	S15 (I)	S12 (I)	S10 (I)	S2 (III)	S5 (I)	Concludin	greinarks
15:45	Registration	Ξ	S16 (II)	S1 (II)	010 ()	010 (.)	011 (.)	010 (.)	0_()	00 (.)		
16:00	gist	ting										
16:15	Re	Registral s Meeting (I)	0.5		Coffee	e Break	Coffee	e Break	Coffee	Break		
16:30 16:45		ess l	Coffee	Break								
17:00		ICCP Busines			S13 (IV)				S2 (IV)	S5 (I)		
17:15		P B(S14 (I)	S1 (III)	. ,	S15 (II)	S12 (II)	S10 (II)	. ,			
17:30		ICC									l	
17:45					CMW							
18:00			Ice Br	eaker							1	
Evenings			Reception		Laborato	ory Tours		usiness		ce Dinner		
-			Ha				Meet	ing (II)	at Old 1	ranord		
			Poster s	occion 1	Destar	accian 2	Desta	accian 2	Destair	accian 4	1	
			C Renold	ession 1 Marquee	C Renold	ession 2 Marquee	C Renold	Session 3 Marquee	C Renold	ession 4 Marquee		
Posters			P1	P16	P13	P15	P10	P12	P3	P5		
Sessions				P17		P14	P7	P6		P2	1	
				P4				P8		P9	l	
								P11				
	S1	Basic clou	d and preci	oitation ph	vsics	S10	Polar clou	ds and clou	d systems			
s l	S2		undary laye		•	S11		ice produc	•			
ŇÖ	S3Convective cloudsS4Mixed phase cloudsS5Cirrus cloudsS6Cloud electrificationS7Entrainment and mixing				S12	Aerosol-cloud-precip'n-interactions and processing						
ESSI				\$13		•		• •	s of clouds			
los					\$14 \$15		and cloud c precipitatio					
KEY TO SESSIONS					S15		Cloud and precipitation chemistry Measurement techniques (cloud & precip' prop's) & uncertain			ertainties		
×				le cloud systems		S17						
	S9	Tropical c	louds and cl	oud syster	ns	Mason	Plenary Se	ession - Hon	ouring Sir	John Maso	n	

17th International Conference on Clouds and Precipitation:

Manchester 2016

Main Menu - Daily Conference Programme of Presentations by Sessions:

Sunday 24th July

Monday 25th July

Tuesday 26th July

Wednesday 27th July

Thursday 28th July

Friday 29th July

All Oral Programme by Sessions

All Poster Programme by Sessions

NB for all abstracts please go to auto-run file and access abstract (via Title; Subject [i.e. session]; Author or Presentation number index option)

Timetable of Conference Sessions at a Glance (Summary)

Sunday 24th July

3.30 - 6.30pm

2.30 - 5.30pm

ICCP Business Meeting I Renold F1 Registration for Delegates Renold C8

Monday 25th Ju	ly
8.30 - 9.00am	Opening Session and Welcome Renold C16
9.00 - 10.00am	Session 18 - Mason Renold C16
10.00 - 10.30am	Coffee Break Renold C15
Parallel Session	S
10.30am - 12.30pm	Session 1 - Basic cloud and precipitation physics I Renold C16
	Session 16 - Measurement techniques (of cloud & precipitation properties) & uncertainties I Renold C2
12.30 - 1.30pm	Lunch Barnes Wallis Room
Destaus	
Posters	
1.30 - 3.00pm	Session P1 - Basic cloud and precipitation physics Renold C floor foyer
1.30 - 3.00pm	<u>Session P16 - Measurement techniques (of cloud & precipitation properties) & uncertainties</u> Marquee
	Session P17 - Applications of cloud & precipitation physics Marquee
	Session P4 - Mixed phase clouds Marquee
Parallel Session	
3.00 - 4.15pm	Session 1 - Basic cloud and precipitation physics II Renold C16
3.00 - 4.15pm	Session 16 - Measurement techniques (of cloud & precipitation properties) & uncertainties II Renold C2
4.30 - 4.45pm	Coffee Break Renold C15
4.45 - 6.00pm	Session 1 - Basic cloud and precipitation physics III Renold C16

Session 14 - Ice nuclei and cloud condensation nucleiRenold C27.00 - 10.00pmIcebreaker Reception
Manchester Town Hall

Tuesday 26th July

Parallel Sessions	
8.30 - 10.00am	Session 13 - Clouds and climate (including radiative properties of clouds) I Renold C16
	Session 14 - Ice nuclei and cloud condensation nuclei II Renold C2
10.00 - 10.30am	Coffee Break Renold C15
10.30 - 12.30pm	Session 13 - Clouds and climate (including radiative properties of clouds) II Renold C16
	<u>Session 14 - Ice nuclei and cloud condensation nuclei</u> III Renold C2
12.30 - 2.00pm	Linking Lunch Barnes Wallis Room
Posters	
2.00 - 3.00pm	Session 13 - Clouds and climate (including radiative properties of clouds) Renold C15
	Session 15 - Cloud and precipitation chemistry Marquee
	Session 14 - Ice nuclei and cloud condensation nuclei Marquee
Parallel Sessions	
3.00 - 4.15pm	Session 13 - Clouds and climate (including radiative properties of clouds) III Renold C16
	Session 15 - Cloud and precipitation chemistry I Renold C2
4.15 - 4.30pm	Coffee Break Renold C15
4.30 - 6.00pm	Session 13 - Clouds and climate (including radiative properties of clouds) IV Renold C16
	Session 15 - Cloud and precipitation chemistry II Renold C2
6.00 - 8.00pm	Manchester University - Centre for Atmospheric Science (CAS) - Lab Tours

Parallel Sessions

8.30 - 10,00am	Session 7 - Entrainment and mixing I Renold C2	
	Session 8 - Mid-latitude cloud systems I Renold C16	
10.00 - 10.30am	Coffee Break Renold C15	
10.30 - 12.30pm	Session 7 - Entrainment and mixing II Renold C2	
	Session 8 - Mid-latitude cloud systems II Renold C16	
12.30 - 1.30pm	Lunch Barnes Wallis Room	

Posters

1.30 - 3.00pm	Session 10 - Polar clouds and cloud systems Renold C15				
	Session 7 - Entrainment and mixing Renold C15				
	Session 12 - Aerosol-cloud-precipitation-interactions and processing Marquee				
	Session 11 - Secondary ice production Marquee				
	Session 6 - Cloud electrification Marquee				
	Session 8 - Mid-latitude cloud systems Marquee				

Parallel Sessions 3.00 - 4.15pm Session 12 - Aerosol-cloud-precipitation-interactions and processing I Renold C16 Session 10 - Polar clouds and cloud systems I Renold C2 Coffee Break 4.15 - 4.30pm Renold C15 4.30 - 6.00pm Session 12 - Aerosol-cloud-precipitation-interactions and processing II Renold C16 Session 10 - Polar clouds and cloud systems II Renold C2 **ICCP Business Meeting II** 6.00 - 9.00pm MMP Room 4/5

Thursday 28th July

Parallel Sessions

8.30 - 10.00am	Session 2 - Warm boundary layer clouds I Renold C16
	Session 3 - Convective clouds I Renold C2
10.00 - 10.30am	Coffee Break Renold C15
10.30 - 12.30pm	Session 2 - Warm boundary layer clouds II Renold C16
	Session 3 - Convective clouds II Renold C2
12.30 - 1.30pm	Lunch Barnes Wallis Room

Posters

- 1.30 3.00pm <u>Session 3 Convective clouds</u> Renold C15 Session 2 - Warm boundary la
 - Session 2 Warm boundary layer clouds Marquee Session 5 - Cirrus clouds Marquee Session 9 - Tropical clouds and cloud systems Marquee

Parallel Sessions 3.00 - 4.15pm Session 2 - Warm boundary layer clouds III Renold C15 Session 5 - Cirrus clouds I Renold C2 4.15 - 4.30pm Coffee Break Renold C15 4.30 - 5.45pm Session 2 - Warm boundary layer clouds IV Renold C16 Session 5 - Cirrus clouds II Renold C2 7.30 - 11.00pm Conference Dinner Manchester United Football Club

Friday 29th July

Parallel Sessions

8.30 - 10.00am	Session 6 - Cloud electrification Renold C16
	Session 4 - Mixed phase clouds I Renold C2
9.45 - 10.00am	Session 9 - Tropical clouds and cloud systems I Renold C16
10.00 - 10.30am	Coffee Break Renold C15
10.30 - 12.30pm	Session 9 - Tropical clouds and cloud systems II Renold C16
10.30 - 12.00pm	Session 4 - Mixed phase clouds II Renold C2
12.00 - 12.30pm	Session 11 - Secondary ice production I Renold C2
12.30 - 1.30pm	Lunch Barnes Wallis Room
1.30 - 3.15pm	Session 9 - Tropical clouds and cloud systems III Renold C16
	Session 11 - Secondary ice production II Renold C2
3.15 - 3.30pm	Concluding remarks of ICCP 2016 Renold C16

Session 18 - Mason Monday 25th July, 9.00 - 10.00am Renold C16 S18.1 Nigel Mason 09:00 S18.2 John Latham 09:15 S18.3 Anthony Illingworth 09:30 S18.4 Development of a Cloud Physics Family Tree Greg McFarquhar^{*1,2}, Robert Hart³, John Cossuth⁴, Cindy Twohy⁵ ¹University of Illinois, USA, ²National Center for Atmospheric Research, USA, ³Florida State University, USA, ⁴Naval Research Laboratory, USA, ⁵NorthWest Research Associates, USA 09:45

Session 1 - Basic cloud and precipitation physics I

Parallel Sessions, 10.30am - 12.30pm, Monday July 25th Renold C16

- S1.1 Large Eddy Simulations of the impact of shear-driven turbulence on snow growth Bart Geerts¹, Xia Chu¹, Lulin Xue^{*2} ¹University of Wyoming, USA, ²NCAR, USA 10:30
- S1.2 Omitted turbulent mechanism leading to preferential concentration in clouds Katarzyna Karpinska*, Szymon P. Malinowski Faculty of Physics, University of Warsaw, Poland 10:45
- S1.3 Turbulence enhancement of cloud droplet collisions: how does the droplet size distribution evolve in turbulent clouds?
 Sisi Chen*, M.K. Yau, Peter Bartello
 McGill University, Canada
 11:00
- S1.4 Drop-droplet collisions observed with holography in a vertical laminar flow Anna Gorska^{*1,2}, Jacob Fugal^{1,3}, Subir Mitra³, Szymon Malinowski^{2,3}, Stephan Borrmann^{1,3}
 ¹Max Planck Institute for Chemistry, Germany, ²Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland, ³Institute of Atmospheric Physics, Johannes Gutenberg University, Germany 11:15
- S1.5 Retrieval of binned rain drop size distributions profiles from multi-frequency radar observations: potential for fingerprinting rain microphysics processes
 Frederic Tridon*¹, Alessandro Battaglia^{1,2}
 ¹Department of Physics and Astronomy, University of Leicester, UK, ²National Center Earth Observation, University of Leicester, UK
 11:30
- S1.6 Use of 3D-printed analogues to investigate the fall speed and orientation of natural ice particles Chris Westbrook University of Reading, UK 11:45
- S1.7 Effective terminal velocity as a measure for the coupling between cloud microphysics and dynamics Ilan Koren*1, Orit Altaratz1, Guy Dagan1, Reuven Heiblum1, Qian Chen1, Zev Levin2
 ¹Weizmann Institute of Science, Israel, ²Tel Aviv University, Israel
 12:00
- S1.8 Cumulus precipitation and the development of the boundary layer Huiwen Xue*1, Guoxing Chen² ¹Peking University, China, ²University at Albany, State University of New York, USA 12:15

Session 1 - Basic cloud and precipitation physics II

Parallel Sessions, 3.00- 4.15pm, Monday July 25th Renold C16

- S1.9 Homogeneous nucleation in supercooled cloud droplets Ben Murray*¹, James Atkinson^{1,2}, Steven Dobbie¹, Ross Herbert¹, Thomas Koop³, Daniel O'Sullivan¹ ¹University of Leeds, UK, ²ETH, Switzerland, ³Bielefeld University, UK 15:00
- S1.10 Supercooled Cloud Tunnel Studies on the Growth Conditions of Branched Planar Snow Crystals: The Influence of Crystal Growth Time
 Tsuneya Takahashi
 Hokkaido University of Education, Japan
 15:15
- S1.11 The effectiveness of spectral bin schemes in simulating ice cloud particle size distributions and their variability Wei Wu*^{1,2}, Greg McFarquhar^{1,2}, Lulin Xue², Hugh Morrison², Wojciech Grabowski² ¹University of Illinois at Urbana Champaign, USA, ²National Center for Atmospheric Research, USA 15:30
- S1.12 The effect of ice particles growth rates in convective clouds Paul Connolly^{*1}, Christopher Westbrook², Junshik Um³, Karina Mccusker² ¹University of Manchester, UK, ²University of Reading, UK, ³University of Illinois, USA 15:45
- S1.13 Simulations of Radar Reflectivity Factors at 94GHz: Ice Crystal Approximation with Oblate Spheroids Emmanuel Fontaine¹, Delphine Leroy¹, Alfons Schwarzenboeck^{*1}, Pierre Coutris¹, Julien Delanoë², Alain Protat³, Fabien Dezitter⁴, Alice Calmels⁴, Walter Strapp⁵, Lyle Lilie⁶ ¹UBP/ CNRS / LaMP, France, ²UVSQ / CNRS / LATMOS, France, ³CAWC / BOM, Australia, ⁴AIRBUS, France, ⁵Met Analytics, Canada, ⁶Science Engineering Associates, USA 16:00
- S1.14 Measurements of vapor growth and sublimation of individually levitated ice particles below -30°C Marcus Hanson*, Alfred Moyle, Jerry Harrington The Pennsylvania State University, USA 16:15

Session 1 - Basic cloud and precipitation physics III

Parallel Sessions, 4.45 - 6.00pm, Monday July 25th Renold C16

S1.15 Developing an advanced categorization scheme for autoconversion using new observables from ground based observations. Claudia Acquistapace*1, Ulrich Löhnert¹, Max Maahn¹, Stefan Kneifel¹, Pavlos Kollias²

¹Institute for Geophysics and Meteorology, Germany, ²McGill University, Canada 16:45

- S1.16 Wind tunnel studies on formation and growth processes of atmospheric ice particles Miklós Szakáll*¹, Alexander Jost², Oliver Eppers^{1,2}, Amelie Mayer¹, Karoline Diehl¹, Subir Mitra², Stephan Borrmann^{1,2}
 ¹University of Mainz, Germany, ²Max Planck Institute for Chemistry, Germany 17:00
- S1.17 Does the shape of the assumed raindrop size distribution matter in convection? Sean Freeman*, Susan van den Heever, Adele Igel Colorado State University, USA 17:15
- S1.18 Exploring the diabatic role of ice microphysical processes in two North Atlantic summer cyclones Christopher Dearden*1, Geraint Vaughan¹, Tzu-Chin Tsai², Jen-Ping Chen² ¹University of Manchester, UK, ²National Taiwan University, Taiwan 17:30
- S1.19 Cloud Droplet Growth and Drizzle Formation in a Turbulent Laboratory Cloud
 W. Cantrell, K. Chandrakar, K. Chang, D. Ciochetto, D. Niedermeier, R. Shaw*, F. Yang
 Michigan Technological University, USA
 17:45

Session 2 - Warm boundary layer clouds I

Parallel Sessions, 8.30 - 10.00am, Thursday July 28th Renold C16

 S2.1 Shallow Marine Cloud Droplet Distributions: In-Situ Field Campaign Observations and Model Parameterization Comparison Alison Nugent*, Jorgen Jensen NCAR, USA

08:30

S2.2 Design and evaluation of a large-eddy simulator with a novel description of aerosol-cloud interactions using a sectional framework

Juha Tonttila*1, Sami Romakkaniemi¹, Harri Kokkola¹, Hannele Korhonen², Zubair Maalick³, Thomas Kühn^{1,3} ¹Finnish Meteorological Institute, Atmospheric Research Centre of Eastern Finland, Finland, ²Finnish Meteorological Institute, Finland, ³University of Easter Finland, Dept. of Applied Physics, Finland 08:45

- S2.3 Drizzle and non-drizzle cloud regimes observed over the northwestern Pacific in summer: Aerosol-cloudprecipitation interactions Makoto Koike^{*1}, M. Mitamura¹, N. Moteki¹, H. Nakamura¹, H. Miura¹, N. Takegawa², K. Kita³ ¹University of Tokyo, Japan, ²Tokyo Metropolitan University, Japan, ³Ibaraki University, Japan 09:00
- S2.4 Identifying Meteorological Controls on Open and Closed Mesoscale Cellular Convection as Associated with Marine Cold Air Outbreaks Isabel McCoy*, Robert Wood University of Washington, USA 09:15
- S2.5 Modulation of stratocumulus to cumulus transition by rain Takanobu Yamaguchi^{*1,2}, Graham Feingold², Jan Kazil^{1,2}
 ¹CIRES, University of Colorado, USA, ²NOAA ESRL, USA 09:30
- S2.6 Ultra-clean Layers and Low Albedo Clouds in the Marine Boundary Layer Robert Wood*1, Paquita Zuidema², Chris Bretherton¹, Bruce Albrecht², Virendra Ghate³, Mampi Sarkar², Susanne Glienke⁴, Johannes Mohrmann¹, Raymond Shaw⁴, Jacob Fugal⁵
 ¹University of Washington, USA, ²University of Miami, USA, ³Argonne National Lab, USA, ⁴Michigan Technological University, USA, ⁵Mainz University, Germany 09:45

Session 2 - Warm boundary layer clouds II

Parallel Sessions, 10.30am - 12.30pm, Thursday July 28th Renold C16

S2.7 Turbulent enhancement of collision-coalescene processes in large-eddy simulations of trade wind cumulus clouds

Axel Seifert^{*1}, Ryo Onishi² ¹Deutscher Wetterdienst, Germany, ²Center for Earth Information Science and Technology, Japan Agency for Marine-Earth Science and Technology, Japan 10:30

- S2.8 Relationship Between Turbulence and Drizzle Onset and Growth in Low-level Continental and Marine Stratiform Clouds Using ARM Observations
 Edward Luke*¹, Paloma Borque³, Wanda Szyrmer³, Pavlos Kollias^{2,1}
 ¹Brookhaven National Lab, USA, ²Stony Brook University, USA, ³McGill University, Canada 10:45
- S2.9 Giant aerosols vs turbulent collision enhancement in marine stratocumuli. Piotr Dziekan*1, Jorgen Jensen², Anna Jaruga¹, Hanna Pawlowska¹
 ¹Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland, ²Earth Observation Laboratory, National Center for Atmospheric Research, USA 11:00
- S2.10 Turbulence-microphysics feedbacks in LES of marine stratocumulus Mikael Witte*¹, Patrick Chuang¹, Orlando Ayala^{3,2}, Lian-Ping Wang²
 ¹University of California Santa Cruz, USA, ²University of Delaware, USA, ³Old Dominion University, USA 11:15
- S2.11 Marine stratocumulus: Variability in Precipitation Rate Caused by Variability in Giant Sea-Salt Size Distributions (GCCN) Jorgen Jensen*, Alison Nugent NCAR Earth Observation Laboratory, USA 11:30
- S2.12 Recirculation and growth of raindrops in simulated shallow cumulus Ann Kristin Naumann*1, Axel Seifert²
 ¹Max Planck Institute for Meteorology, Germany, ²Deutscher Wetterdienst, Germany 11:45
- S2.13 Stratocumulus precipitation from long-resident droplets Alberto de Lozar Max Planck Institute for Meteorology, Germany 12:00
- S2.14 Drizzle Production in Stratocumulus-topped Boundary Layers
 Pavlos Kollias^{*1,3}, Edward Luke², Wanda Szyrmer³
 ¹Stony Brook University, USA, ²Brookhaven National Laboratory, USA, ³McGill University, Canada 12:15

Session 2 - Warm boundary layer clouds III

Parallel Sessions, 3.00 - 4.15pm, Thursday July 28th Renold C15

- S2.15 The microscale dynamics of warm fog layer in the Ganges Valley Anandakumar Karipot¹, Subharthi Chowdhuri², P Murugavel², Thara Prabha^{*2} ¹SP Pune university, India, ²Indian Institute of Tropical Meteorology, India 15:00
- S2.16 The effect of aerosol on radiation fog life-cycle Sami Romakkaniemi*¹, Zubair Maalick², Juha Tonttila¹, Ari Laaksonen³, Harri Kokkola¹, Thomas Kuhn^{1,2} ¹Finnish Meteorological Institute, Finland, ²University of Eastern Finland, Finland, ³Finnish Meteorological Institute, Finland 15:15
- S2.17 An overview of the LANFEX, (Local and Non-local Fog EXperiment) observational campaign.
 Amanda Kerr-Munslow*, Jeremy Price, Siân Lane, Bernard Claxton, Simon Osborne *Met Office, UK*15:30
- S2.18 Improving high-resolution fog simulations using LANFEX observations Ian Boutle*, Adrian Lock, Jeremy Price Met Office, UK 15:45
- S2.19 Elucidating the processes responsible for radiation fog formation during the LANFEX fog campaign.
 Jeremy Price
 Met Office, UK
 16:00

Session 2 - Warm boundary layer clouds IV

Parallel Sessions, 4.30 - 5.45pm, Thursday July 28th Renold C16

- S2.20 Mid boundary layer humidity pockets as the formation mechanism of small warm clouds Eitan Hirsch^{1,2}, Orit Altaratz^{*1}, Ilan Koren¹, Zev Levin³, Eyal Agassi²
 ¹The Weizmann Institute of Science, Israel, ²Israel Institute for Biological Research, Israel, ³Tel-Aviv University, Israel
 16:30
- S2.21 How shallow convection in drier subsiding atmospheres supports deeper trade-wind layers and more precipitation
 Raphaela Vogel*1, Louise Nuijens², Bjorn Stevens¹
 ¹Max Planck Institute of Meteorology, Germany, ²Massachusetts Institute of Technology, USA 16:45
- S2.22 Impacts of cloud microphysical schemes on precipitation of shallow warm clouds Naomi Kuba*1, Kentaroh Suzuki¹, Masaki Satoh^{1,2}, Tatsuya Seiki², Roh Woosub¹ ¹Atmosphere and Ocean Research Institute, Japan, ²Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Japan 17:00
- S2.23 Overlap statistics of shallow boundary layer clouds: Comparing ground-based observations with large-eddy simulations.
 Gabriele Corbetta¹, Emiliano Orlandi¹, Thijs Heus², Roel Neggers¹, Susanne Crewell¹, Kerstin Ebell^{*1}
 ¹Institute for Geophysics and Meteorology, University of Cologne, Germany, ²Department of Physics, Cleveland State University, USA, ³RPG Radiometer Physics GmbH, Germany 17:15
- S2.24 Attaining Low Horizontal Variability of Effective Radius in Stratocumulus Clouds Leehi Magaritz-Ronen*, Mark Pinsky, Alexander Khain The Hebrew University of Jerusalem, Israel 17:30

Session 3 - Convective clouds I

Parallel Sessions, 8.30 - 10.00am, Thursday July 28th Renold C2

S3.1 The microphysics and kinematics of a potential flash flood on 3 August2013 during COPE

Alan Blyth^{*1}, Yahui Huang², Lindsay Bennett¹, Keith Browning², Sonia Lasher-Trapp³, David Leon⁴, Jeff French⁴, Tom Choularton⁵, Phil Brown⁶, Humphrey Lean⁷ ¹National Centre for Atmospheric Science, University of Leeds, UK, ²University of Leeds, UK, ³University of Illinois, USA, ⁴University of Wyoming, USA, ⁵University of Manchester, UK, ⁶Met Office, UK, ⁷Met Office, UK 08:30

- S3.2 Ice formation in convective clouds over southwest England Jonathan Taylor*¹, Tom Choularton¹, Alan Blyth², Zixia Liu¹, Keith Bower¹, Jonathan Crosier^{1,3}, Martin Gallagher¹, Paul Williams^{1,3}, James Dorsey^{1,3}, Michael Flynn¹, Gillian Young¹, Lindsay Bennett², Yahui Huang², Phil Rosenberg², Jeff French⁴, Alexei Korolev⁵, Phil Brown⁶ ¹Centre for Atmospheric Science, University of Manchester, UK, ²National Centre for Atmospheric Science, University of Leeds, UK, ³National Centre for Atmospheric Science, University of Manchester, UK, ⁴Department of Atmospheric Science, University of Wyoming, USA, ⁵Cloud Physics and Severe Weather Research Section, Environment Canada, Canada, ⁶Met Office, UK 08:45
- S3.3 Microphysical Structure of Elevated Convection in Winter Cyclones Amanda Murphy*1, Robert Rauber1, Greg McFarquhar1, Brian Jewett1, David Plummer^{1,2}, Joseph Finlon1, Andrew Rosenow1
 ¹Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, USA, ²Department of Atmospheric Science, University of Wyoming, USA 09:00
- S3.4 Microphysical implications of convection, turbulence, generating cells and other fine scale structures within a cyclone along the U.S. Northeast Coast: a first look at high resolution HIAPER Cloud Radar Observations Robert Rauber*¹, Scott Ellis², Andrew Janiszeski¹, J Vivekanandan², Jeffrey Stith², Wen-Chau Lee², Greg McFarquhar¹, Brian Jewett¹
 ¹University of Illinois, USA, ²National Center for Atmospheric Research, USA 09:15
- S3.5 The microphysical properties and radiative consequences of frozen droplets in the upper regions of convective storms Jeffrey Stith^{*1}, Greg McFarquhar², Junshik Um² ¹National Center for Atmospheric Research, USA, ²University of Illinois at Urbana-Champaign, USA 09:30
- S3.6 Graupel and hail properties retrieval in supercells thunderstorms from airborne multifrequency radar and radiometer observations
 Alessandro Battaglia^{*1,2}, Frederic Tridon¹, Kamil Mroz¹, Simone Tanelli³, Tim Lang⁴, Gerry Heymsfield⁵, Lin Tian⁵
 ¹Department of Physics and Astronomy, University of Leicester, UK, ²National Center Earth Observation, University of Leicester, UK, ³Jet Propulsion Laboratory, California Institute of Technology, USA, ⁴NASA Marshall Space Flight Center, USA, ⁵NASA Goddard Space Flight Center, USA 09:45

Session 3 - Convective clouds II

Parallel Sessions, 10.30am - 12.30pm, Thursday July $\mathbf{28}^{th}$ Renold C2

- S3.7 How are changes in warm phase microphysics reflected in deep convective clouds? Qian Chen*, Ilan Koren, Orit Altaratz, Reuven Heiblum, Guy Dagan, Lital Pinto Weizmann Institute of Science, Israel 10:30
- S3.8 Aerosol-cloud interaction signal in a meteorological ensemble of convective precipitation from COPE Annette Miltenberger*1, Paul Field^{1,2}, Philip Rosenberg¹, Adrian Hill², Ben Shipway¹, Jonathan Wilkinson², Alan Blyth¹ ¹University of Leeds, UK, ²MetOffice, UK 10:45
- S3.9 Storm Transport of Dust from the Boundary Layer to Upper Troposphere Susan van den Heever*1, Leah Grant1, Stephen Herbener1, Amanda Sheffield1, Stephen Saleeby1, Cynthia Twohy2, Kathryn Sauter3, Tristan L'Ecuyer3, Catherine Naud4, Derek Posselt5 ¹Colorado State University, USA, ²NorthWest Research Associates, USA, ³University of Wisconsin - Madison, USA, ⁴Columbia University, USA, ⁵University of Michigan, USA
- S3.10 Toward a PDF representation of deep convection: the importance and parameterization of hydrometeor transport Mikhail Ovchinnikov*1, May Wong² ¹Pacific Northwest National Laboratory, USA, ²National Center for Atmospheric Research, USA 11:15
- S3.11 Center-of-gravity vs. mass phase space an efficient approach for analyzing interactions and key processes in cloud fields Reuven H. Heiblum*¹, Orit Altaratz¹, Ilan Koren¹, Graham Feingold², Alexander Kostinski³, Alexander Khain⁴, Mikhail Ovchinnikov⁵, Erick Fredj^{1,6}, Guy Dagan¹, Lital Pinto¹, Ricki Yaish¹, Qian Chen¹
 ¹Department of Earth and Planetary Sciences, Weizmann Institute of Science, Israel, ²NOAA Earth System Research Laboratory (ESRL), Chemical Sciences Division, USA, ³Department of Physics, Michigan Technological University, USA, ⁴The Institute of the Earth Science, Hebrew University of Jerusalem, Israel, ⁵Atmosphere Science and Global Change Division, Pacific Northwest National

Laboratory, USA, ⁶(Jerusalem College of Technology, Israel 11:30 S3.12 Controls on the Characteristics of Convective Clouds Associated with Sea Breeze

Circulations Adele L Igel^{*1}, Jungmin Park¹, Jill S Johnson², Susan C van den Heever¹, Ken S Carslaw²

¹Colorado State University, USA, ²University of Leeds, UK 11:45

- S3.13 Assessing Clausius-Clapeyron scaling of moist convection over land within an idealized convection-resolving modeling framework Linda Schlemmer*, Christoph Schär Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland 12:00
- S3.14 Dynamical Influences on Cold Pool Development George Bryan National Center for Atmospheric Research, USA 12:15

Return to Main Menu

11:00

Session 4 - Mixed phase clouds I

Parallel Sessions, 8.30 - 10.00am, Friday July 29th Renold C2

- S4.1 Microphysical cloud properties and cloud probes' benchmark during the Pallas Cloud Experiments (PaCE).
 Konstantinos Doulgeris*1, Ari Leskinen², Mika Komppula², David Brus¹
 ¹Finnish Meteorological Institute, Finland, ²Finnish Meteorological Institute, Finland
 08:30
- S4.2 Liquid water content and effective radius retrievals in mixed-phase cloud layers from Cloud radar data based on the forward modeling Yujun Qiu*1, Tom Choularton², Jonny Crosier²
 ¹Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, China, ²Centre for Atmospheric Science, SEAES, University of Manchester, UK 08:45
- S4.3 Aircraft Observations of Liquid and Ice in Midlatitude Mixed-Phase Clouds Zhen Zhao*, Heng-chi Lei Institute of Atmospheric Physics, Chinese Academy of Sciences, China 09:00
- S4.4 Vertical profiles of cloud properties measured with a holographic imager on a cable car

Alexander Beck^{*}, Jan Henneberger, Zamin A. Kanji, Ulrike Lohmann Institute of Atmospheric and Climate Science, ETH Zurich, Switzerland 09:15

- S4.5 A detailed examination of the microphysical processes leading to ice production within an orographic wintertime cloud with freezing drizzle Jeffrey French*1, Sarah Tessendorf², Darcy Jacobson¹, Roy Rasmussen², Bart Geerts¹, Binod Pokharel¹, Lulin Xue¹, Pat Holbrook³, Mel Kunkel³, Derek Blestrud³, Shaun Parkinson³
 ¹University of Wyoming, USA, ²NCAR/RAL, USA, ³Idaho Power Company, USA 09:30
- S4.6 In-situ airborne observations of small ice in turbulent mixed phase altocumulus clouds.

Paul Barrett^{*1,2}, Alan Blyth^{2,3}, Philip R. A. Brown¹, Zbigniew Ulanowski⁴ ¹Met Office, UK, ²University of Leeds School of Earth and Environment, Institute for Climate and Atmospheric Science, UK, ³National Centre for Atmospheric Science, University of Leeds, UK, ⁴Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, UK 09:45

Session 4 - Mixed phase clouds II

Parallel Sessions, 10.30am - 12pm, Friday July 29th Renold C2

- S4.7 In situ and radar Doppler spectrum constraints of ice sticking efficiency and ice properties in a mid-latitude squall line Marcus van Lier-Walqui*^{1,2}, Ann Fridlind², Andrew Ackerman², Christopher Williams³, Greg McFarquhar⁴, Wei Wu⁴, Xiaowen Li^{5,6}, Wei-Kuo Tao⁶, Alexei Korolev⁷
 ¹Columbia University, USA, ²NASA Goddard Institute For Space Studies, USA, ³University of Colorado, USA, ⁴University of Illinois, USA, ⁵Morgan State University, USA, ⁶NASA Goddard Space Flight Center, USA, ⁷Environment Canada, Canada 10:30
 S4.8 LIMA: A two-moment microphysical scheme driven by a multimodal population of
- 24.5 Linki, A two moment introprysical scheme and interven by a matchinedal population of cloud condensation and ice freezing nuclei Jean-Pierre Pinty^{*1}, Benoît Vié², Sarah Berthet³, Maud Leriche¹ ¹Laboratoire d'Aérologie, UMR5560, CNRS/Université de Toulouse, France, ²Météo-France, UMR3589, CNRS/Météo-France, France, ³LEGOS, UMR5566, CNES/CNRS/IRD/Université de Toulouse, France 10:45
- S4.9 Microphysics parameterization of explicit partial melting of snow to study the formation of freezing rain and ice pellets Mélissa Cholette*, Julie M. Thériault University of Quebec at Montreal, Canada 11:00
- S4.10 Effect of Evaporation on Midlatitude Continental Convective Clouds Experiment (MC3E) Melting Layer Simulations Andrea Neumann*1, Michael Poellot1, Andrew Heymsfield2, Aaron Bansemer2
 ¹University of North Dakota, USA, ²National Center for Atmospheric Research, USA 11:15
- S4.11 Synthesis of observations and models using a new Bayesian framework for microphysical parameterization
 Hugh Morrison¹, Marcus van Lier-Walqui^{*2}, Matthew Kumjian³, Olivier Prat⁴
 ¹NCAR, USA, ²Columbia University, USA, ³Pennsylvania State University, USA, ⁴North Carolina State University, USA 11:30
- S4.12 Relationship between atmospheric aerosols, hail and polarimetric radar signatures in a mid-latitude storm
 Eyal Ilotoviz¹, Alexander Khain^{*1}, Vaughan Phillips², Alexander Ryzhkov³
 ¹The Hebrew University of Jerusalem, Israel, ²Lund University, Sweden, ³University of Oklahoma, USA 11:45

Session 5 - Cirrus clouds I

Parallel Sessions, 3.00 - 4.15pm, Thursday July 28th Renold C2

- S5.1 In-situ Observations of Cirrus Cloud Microphysics during CIRCCREX Keith Bower*1, Sebastian O'Shea1, Thomas Choularton1, Gary Lloyd1, Richard Cotton2, Steve Abel2, Phillip Brown2, Jonathan Murray3, Juliet Pickering3
 ¹University of Manchester, UK, ²Met Office, UK, ³Imperial College, University of London, UK 15:00
- S5.2 Reconciliation of in-situ observations and large-scale simulations of mid-latitude cirrus clouds Christian Rolf*¹, Jens-Uwe Grooß¹, Peter Spichtinger², Anja Costa¹, Martina Krämer¹
 ¹Forschungszentrum Jülich, Germany, ²Institute for Atmospheric Physics, Johannes Gutenberg University of Mainz, Germany
 15:15
- S5.3 Aircraft-based single particle mass spectrometric analysis of cirrus cloud residues Johannes Schneider*1, Stephan Mertes², Thomas Klimach¹, Stephan Borrmann^{3,1}
 ¹Max Planck Institute for Chemistry, Germany, ²Leibniz Institute for Tropospheric Research, Germany, ³Johannes Gutenberg University, Germany 15:30
- S5.4 Model Application of a new Ice Nucleation Active Surface Site Parameterization for Desert Dust and Soot Romy Ullrich^{*1}, Corinna Hoose¹, Ottmar Moehler¹, Daniel J. Cziczo², Karl Froyd³, Bernhard Vogel¹, Heike Vogel¹, Daniel Rieger¹, Tobias Schad¹, Konrad Deetz¹ ¹Karlsruhe Institute of Technology, Germany, ²Massachusetts Institute of Technology, USA, ³NOAA, USA 15:45
- S5.5 High Ice Water Content in Cirrus Clouds Linked to Biomass Burning Graciela Raga*1, Darrel Baumgardner², Mark Parrington³
 ¹Centro de Ciencias de la Atmosfera, UNAM, Mexico, ²Droplet Measurement Technologies, USA, ³ECMWF, UK 16:00

Session 5 - Cirrus clouds II

Parallel Sessions, 4.30 - 5.45pm, Thursday July 28th Renold C2

- S5.6 Aviation effects on already-existing cirrus clouds Matthias Tesche^{*1,3}, Peggy Achtert^{2,3}, Paul Glantz³, Kevin Noone³
 ¹University of Hertfordshire, UK, ²University of Leeds, UK, ³Stockholm University, Sweden 16:30
- S5.7 The Dependence of Cirrus Cloud Formation Mechanism on Latitude, Season and Surface Type David Mitchell^{*1}, Anne Garnier², Melody Avery³, Ehsan Erfani¹
 ¹Desert Research Institute, USA, ²Science Systems and Applications, Inc., USA, ³NASA Langley Research Center, USA
 16:45
- S5.8 Vertical Velocity Fluctuations Modulate the Aerosol Indirect Effect on Ice Clouds Donifan Barahona*, Andrea Molod, William Putman, Max Suarez NASA Goddard Space Flight Center, USA 17:00
- S5.9 The Impact of Surface Kinetic Resistance and Particle Shape on the Competition between Heterogeneous and Homogeneous Freezing in Cirrus.
 Jerry Harrington^{*1}, Marcus Hanson¹, Hugh Morrison², Benjamin Sherman⁰
 ¹Penn State University, USA, ²National Center for Atmospheric Research, USA
 17:15
- S5.10 Cryo-Scanning Electron Microscopy of Captured Cirrus Ice Particles Nathan Magee*, Katie Boaggio, Lucas Bancroft, Manisha Bandamede, Kevin Hurler The College of New Jersey, USA 17:30

Session 6 - Cloud electrification

Parallel Sessions, 8.30 - 10.00am, Friday July 29th Renold C16

- S6.1 Diagnosing the development of a severe thunderstorm in the Amazon Region during the 2014 CHUVA/GO-Amazon 2nd IOP Field Campaign Carlos Augusto Morales^{*1}, Rachel Albrecht¹, Moacir Lacerda² ¹University of São Paulo, Brazil, ²University of Mato Grosso do Sul, Brazil 08:30
- S6.2 Current Understanding in Cloud Electrification James E. Dye NCAR, USA 08:45
- S6.3 Cloud-aerosol-precipitation interactions in cloud electrification over the Amazon Rachel Albrecht*1, Ramon Braga², Carlos Morales¹, Luiz Machado², Meinrat Andreae³, Daniel Rosenfeld⁴, Hartmut Höller⁵, Manfred Wendisch⁶
 ¹Universidade de Sao Paulo, Brazil, ²Instituto Nacional de Pesquisas Espaciais, Brazil, ³Max Planck Institute for Chemistry, Germany, ⁴Hebrew University of Jerusalem, Israel, ⁵German Aerospace Center (DLR), Germany, ⁶Universität Leipzig, Germany
 09:00
- S6.4 First evaluation of the aerosol microphysics electrification coupling in the Meso-NH model : lightning activity within a tropical cyclone of the South-West Indian Ocean

Christelle Barthe^{*1}, Thomas Hoarau¹, Pierre Tulet¹, Jean-Pierre Pinty², Christophe Bovalo², Marine Claeys³, Benoît Vié³

¹Laboratoire de l'Atmosphère et des Cyclones (UMR 8105, CNRS / Météo-France / Université de La Réunion), France, ²Laboratoire d'Aérologie (UMR 5560, CNRS / Université de Toulouse), France, ³CNRM-GAME (UMR 3589, CNRS / Météo-France), France 09:15

S6.5 Evaluation of thunderstorm forecasts using two microphysics schemes Jonathan Wilkinson*, Paul Field Met Office, UK 09:30

Session 7 - Entrainment and mixing I

Parallel Sessions, 8.30 - 10.00am, Wednesday July 27th Renold C2

- S7.1 Airborne Radar and Lidar Observations of Cloud-Environment Interactions, Entrainment, and Drizzle Formation in High CDNC Convective Cloud Complexes David Leon*¹, Jeffrey French¹
 ¹University of Wyoming, USA, ²University of Illinois at Urbana-Champaign, USA, ³National Center for Atmospheric Science, University of Leeds, UK 08:30
- S7.2 High-resolution Simulations of Cumulus Entrainment Sonia Lasher-Trapp*1, David Leon², Daniel Moser¹, Jeff French², Alan Blyth³ ¹University of Illinois, USA, ²University of Wyoming, USA, ³NCAS, School of Earth and Environment, Univ. of Leeds, UK 08:45
- S7.3 Entrainment and Dilution Rates of Successive Thermals in a Simulated Cumulus Congestus Daniel Moser*, Sonia Lasher-Trapp

University of Illinois in Urbana-Champaign, USA 09:00

- S7.4 Analysis of homogeneous and inhomogeneous mixing in liquid clouds Alexei Korolev^{*1}, Alex Khain², Mark Pinsky², Jeffrey French³ ¹Environment and Clinate Change Canada, Canada, ²the Hebrew University of Jerusalem, Israel, ³University of Wyoming, USA 09:15
- S7.5 Examination of Entrainment-Mixing Mechanisms in Observed and Simulated Cumuli Chunsong Lu^{*1,2}, Yangang Liu², Seong Soo Yum³
 ¹Nanjing University of Information Science and Technology, China, ²Brookhaven National Laboratory, USA, ³Yonsei University, Republic of Korea 09:30
- S7.6 Investigation of DSD variations in a developing monsoon cloud: Analysis from numerical simulation and field observation Bipin Kumar*, Sudarsan Bera, Thara Prabhakaran Indian Institute of Tropical Meteorology, Pune, India 12:15

Session 7 - Entrainment and mixing II

Parallel Sessions, 10.30am - 12.30pm, Wednesday July 27th Renold C2

- S7.7 Impact of cloud microphysics on the phase composition of a tropical mesoscale convective system
 - Charmaine Franklin*¹, Alain Protat² ¹CSIRO, Australia, ²Bureau pf Meteorology, Australia 10:30
- S7.8 The Effects of Entrainment and Mixing on Droplet Size Distributions: Bridging the DNS-LES Gap Steven Krueger University of Utah, USA 10:45
- S7.9 Impact of Aerosol Amount on Drop Environments and Mixing Characteristics of Warm Continental Cumulus During GoMACCS Jennifer Griswold*1, Patrick Chuang² ¹University of Hawaii at Manoa, USA, ²University of California - Santa Cruz, USA 11:00
- S7.10 Exploring the Interaction Web of Aerosol-Cloud-Precipitation System Yangang Liu*¹, Jingyi Chen², Chunsong Lu^{3,1}, Shinjae Yoo¹, Yiran Peng⁴, Satoshi Endo¹, Wuyin Lin¹ ¹Brookhaven National Lab, USA, ²Stony Brook University, USA, ³Nanjing University of Information and Technology, China, ⁴Tsinghua University, China 11:15
- S7.11 The role of organic compounds in cloud formation: Relative importance of entrainment, co-condensation and particle-phase properties
 Samuel Lowe*^{1,2}, Daniel Partridge^{1,2}, David Topping^{3,4}, Ilona Riipinen^{1,2}
 ¹Department of Environmental Science and Analytical Chemistry, Stockholm University, Sweden, ²Bert Bolin Centre for Climate Research, Stockholm University, Sweden, ³School of Earth Atmospheric and Environmental Science, University of Manchester, UK, ⁴National Centre for Atmospheric Science (NCAS), University of Manchester, UK
- S7.12 Impacts of entrainment on the microphysical properties of stratocumulus clouds observed during the Marine Stratus/Stratocumulus Experiment (MASE-II) Lisa Nyberg*, Daniel Partridge, Johan Ström Stockholm University, Sweden 11:45
- S7.13 Evaporative Cooling and Entrainment in POST Stratocumulus Hermann Gerber*1, Szymon P. Malinowski², Haflidi Jonsson³
 ¹Gerber Scientific, Inc., USA, ²University of Warsaw, Poland, ³Naval Post-Graduate School, USA 12:00

S7.14 Anisotropic turbulence within a capping inversion: a missing piece in the puzzle of stratocumulus entrainment
Szymon Malinowski^{*1}, Marta Kopeć¹, Hermann Gerber², Djamal Khelif³, Imai Jen-La Plante¹, Yongfeng Ma¹, Katarzyna Karpińska¹, Katarzyna Nurowska¹, Jesper Pedersen¹, Wojciech Kumala¹
¹University of Warsaw, Faculty of Physics, Institute of Geophysics, Poland, ²Gerber Scientific Inc., USA, ³Department of Mechanical and Aerospace Engineering, University of California, USA 12:15

Session 8 - Mid-latitude cloud systems I

Parallel Sessions, 8.30 - 10.00am, Wednesday July 27th Renold C16

- S8.1 Microphysical and thermodynamic structure of two nocturnal elevated mesoscale convective systems sampled during the 2015 PECAN project
 Daniel M. Stechman^{*1}, Greg M. McFarquhar¹, Robert M. Rauber¹, Brian F. Jewett¹, Robert A. Black⁵, David P. Jorgensen⁴, Michael M. Bell², Terry J. Schuur^{3,6}
 ¹University of Illinois at Urbana-Champaign, USA, ²University of Hawai'i at Mãnoa, USA, ³Cooperative Institute for Mesoscale Meteorological Studies, USA, ⁴National Oceanic and Atmospheric Administration/National Severe Storms Laboratory, USA, ⁵National Oceanic and Atmospheric Administration/Hurricane Research Division, USA, ⁶University of Oklahoma, USA
- S8.2 Investigating the parameterization of graupel density on simulated squall line characteristics Sarah Tessendorf*1, Steven Naegele², Greg Thompson¹, Kyoko Ikeda¹, Trude Eidhammer¹ ¹NCAR/RAL, USA, ²Penn State University, USA 08:45
- S8.3 Impacts of mesoscale circulation amplification on simulated squall line precipitation biases Adam Varble*¹, Hugh Morrison², Edward Zipser¹

¹University of Utah, USA, ²NCAR, USA 09:00

- S8.4 Impacts of modeling ice particle shape evolution on orographic precipitation and squall-line structure Anders Jensen*1, Jerry Harrington², Hugh Morrison³ ¹NSF/NCAR, USA, ²The Pennsylvania State University, USA, ³NCAR, USA
- S8.5 The robustness of cloud model predictions over different aerosol environments. Jill S Johnson*, Zhiqiang Cui, Lindsay Lee, Ken Carslaw University of Leeds, UK 09:30
- S8.6 Rapid Aggregation of Ice Particles explored using multiple-radar Doppler spectra Andrew Barrett*, Chris Westbrook, John Nicol, Thorwald Stein University of Reading, UK 09:45

<u>Return to Main Menu</u>

09:15

Parallel Sessions, 10.30am - 12.30pm, Wednesday July 27th Renold C16

- S8.7 Increased aerosol concentrations above the PBL impact on MCS stratiform precipitation Michal Clavner, William Cotton* Colorado State University, USA 10:30
- S8.8 KiD-A intercomparison: How sensitive are microphysics schemes to the representation of aerosol?
 Adrian Hill*1, Zachary Lebo²
 ¹Met Office, UK, ²University of Wyoming, USA
- S8.9 Validation of the 2-moment microphysical scheme LIMA based on HyMeX microphysical observations Marie TAUFOUR*1, Benoît VIE1, Gaëlle DELAUTIER1, Jean-Pierre PINTY2 ¹CNRM-GAME, France, ²Laboratoire d'Aérologie, France 11:00
- S8.10 Aircraft observations and convection permitting model simulations of cold-air outbreak events Steven J. Abel*¹, Ian Boutle¹, Keith N. Bower², Phillip R. A. Brown¹, Tom Choularton², Stuart Fox¹, Gary Lloyd², Kirk Waite¹ ¹Met Office, UK, ²University of Manchester, UK 11:15
- S8.11 Airborne 4-Frequency Radar Measurements of Precipitation and Clouds During IPHEx and RADEX Gerald Heymsfield*1, Lin Tian^{2,1}, Mircea Grecu^{2,1}, Matthew McLinden¹, Lihua Li¹, Vijay Venkatesh³
 ¹Goddard Space Flight Center, USA, ²GESTAR/Goddard Space Flight Center, USA, ³Science Systems and Applications, USA
- S8.12 Constraining precipitation susceptibilities of warm, ice- and mixed-phase clouds with microphysical equations Franziska Glassmeier*, Ulrike Lohmann ETH Zurich, Switzerland 11:45
- S8.13 Improving fog diagnosis in the Met Office's operational forecast model Bernard Claxton Met Office, UK 12:00
- S8.14 Implementation of a triple-moment modal parameterization for simulating ice crystal growth habit effects on cloud and precipitation during DIAMET Jen-Ping Chen*¹, Tzu-Chin Tsai¹, Christopher Dearden² ¹National Taiwan University, Taiwan, ²University of Manchester, UK 12:15

Session 9 - Tropical clouds and cloud systems I

Parallel Sessions, 9.45 - 10.00am, Friday July 29th Renold C16

S9.1 Understanding Tropical Cloud Feedback from an Analysis of the Circulation and Stability Regimes Simulated from an Upgraded Multiscale Modeling Framework Kuan-Man Xu*1, Anning Cheng²
 ¹NASA Langley Research Center, USA, ²NOAA Center for Weather and Climate Prediction (NCWCP), USA 09:45

Parallel Sessions, 10.30am - 12.30pm, Friday July 29th Renold C16

- S9.2 HAIC/HIWC field project: ice crystal mass-size relationship in high ice water content cloud conditions Delphine Leroy¹, Pierre Coutris¹, Emmanuel Fontaine¹, Alfons Schwarzenboeck^{*1}, J. Walter Strapp², Alexei Korolev³, Greg McFarquhar⁴, Christophe Gourbeyre¹, Regis Dupuy¹, Fabien Dezitter⁵, Alice Calmels⁵ ¹LaMP - CNRS/UBP-, France, ²Met Analytics, Inc., Canada, ³Environment Canada, Canada, ⁴University of Illinois, USA, ⁵Airbus Operation SAS, France 10:30
- S9.3 On the vertical structure of IWC and 3D wind in deep tropical convection observed during the HIWC-HAIC-experiment at Darwin: a comparison of small scale, bin resolved cloud modeling with airborne cloud radar observations
 Wolfram Wobrock*1, Julien Delanoë²
 ¹Laboratoire de Météorologie Physique, Clermont Université, France, ²Laboratoire Atmosphère, Milieux, Observations Spatiales, France 10:45
- S9.4 Ice Particle Initiation and Development in Tropical Convective Clouds around the Cape Verde Archipelago Jonathan Crosier*¹, Gary Lloyd¹, Thomas Choularton¹, Martin Gallagher¹, Keith Bower¹, Michael Flynn¹, Jonathan Taylor¹, Alan Blyth³, Paul Field², Richard Cotton² ¹University of Manchester, UK, ²Met Office, UK, ³University of Leeds, UK 11:00
- S9.5 Effects of microphysical processes on the aggregation of convective clouds and the evolution to a tropical cyclone

Tetsuya Takemi Disaster Prevention Research Institute, Kyoto University, Japan 11:15

- S9.6 Observed relationships between cloud vertical structure and convective aggregation over tropical ocean Thorwald Stein*1, Chris Holloway1, Isabelle Tobin2, Sandrine Bony3
 ¹University of Reading, UK, ²LSCE/IPSL/CNRS, France, ³LMD, ISPL, CNRS, France 11:30
- S9.7 Lagrangian and Eulerian Evolutions of the Tropical Column Humidity-Precipitation Relationship Matthew Igel University of Miami, USA 11:45
- S9.8 Processes controlling the diurnal cycle of moist convection in the West African Sahel Miroslav Provod*, John Marsham, Douglas Parker University of Leeds, UK 12:00
- S9.9 Do deep convective water budgets change in a warmer climate? Rachel Storer*^{1,2}, Graeme Stephens^{1,2}, Susan van den Heever¹
 ¹Colorado State University, USA, ²Jet Propulsion Laboratory, USA 12:15

Session 9 - Tropical clouds and cloud systems III

Parallel Sessions, 1.30 - 3.15pm, Friday July 29th Renold C16

- S9.11 An integrated view of aerosol effects on convection Philip Stier*, Sarah Taylor, Bethan White, Zak Kipling, Laurent Labbouz, Max Heikenfeld Department of Physics, University of Oxford, UK 13:45
- S9.12 Quantifying aerosol effects on deep convection throughout the cloud lifecycle in high-resolution simulations over the Amazon and Congo basin Bethan White*, Philip Stier, Max Heikenfeld University of Oxford, UK 14:00
- S9.13 Biomass Burning Aerosol Detection in Near Real-Time: An algorithm to aid mission planning in the field
 Michael Diamond*, Rob Wood
 University of Washington, USA
 14:15
- S9.14 Microphysical Properties of TTL Cirrus Sarah Woods*1, Paul Lawson1, Eric Jensen2, Paul Bui2, Troy Thornberry3, Andrew Rollins3
 ¹SPEC, Inc., USA, ²NASA Ames Research Center, USA, ³NOAA ESRL/CIRES, USA 14:30
- S9.15 Characterization of ice particles in TTL cirrus using 2D light scattering Zbigniew Ulanowski*1, Paul Kaye1, Edwin Hirst1, Chris Stopford1, Eric Jensen2, James Dorsey3, Richard Greenaway1, Georg Ritter1, Evelyn Hesse1, Troy Thornberry4, Andrew Rollins4, Neil Harris5, Martin Gallagher3, Sarah Woods6, Paul Lawson6
 ¹University of Hertfordshire, UK, ²NASA Ames Research Center, USA, ³University of Manchester, UK, ⁴NOAA ESRL Chemical Sciences Division, USA, ⁵University of Cambridge, UK, ⁶SPEC Inc., USA

14:45

S9.16 Bimodality and variability of particle size distributions in high Ice Water Content regions and their relation to cloud and meteorological conditions Shichu Zhu*1, Greg M McFarquhar1, Delphine Leroy2, Alexei Korolev3, Alfons Schwarzenboeck2, Wei Wu1, Walter Strapp4
¹1University of Illinois, USA, ²CNRS/Université Blaise Pascal, France, ³Environment Canada (EC), Canada, ⁴Met Analytics Inc, Canada 15:00

Session 10 - Polar clouds and cloud systems I

Parallel Sessions, 3.00 - 4.15pm, Wednesday July 27th Renold C2

- S10.1 Airborne observations of Antarctic clouds during the 2015 MAC field campaign Sebastian O'Shea*1, Tom Choularton¹, Michael Flynn¹, Keith Bower¹, Constantino Listowski², Amélie Kirchgaessner², Russell Ladkin², Tom Lachlan-Cope² ¹University of Manchester, UK, ²British Antarctic Survey, UK 15:00
- S10.2 In-situ observations of "warm ice" over the Southern Ocean Yi Huang^{1,2}, Thomas Chubb³, Steven Siems^{*1,2}, Michael Manton¹, Eunmi Ahn¹, Mark DeHoog⁴ ¹Monash University, Australia, ²Australian Research Council (ARC) Centre of Excellence for Climate System Science, Australia, ³Snowy Hydro Ltd, Australia, ⁴Hydro Tasmania Ltd, Australia 15:15
- S10.3 In-situ observations of the effect of precipitation on wintertime low-altitude clouds over the Southern Ocean Eunmi Ahn*1, Yi Huang1, Thomas Chubb2, Steven Siems1, Michael Manton1 1Monash University, Australia, 2Snowy Hydro, Australia 15:30
- S10.4 What is the role of sea surface temperature in modulating cloud and precipitation properties over the Southern Ocean?
 Yi Huang*1, Steve Siems1, Michael Manton1, Daniel Rosenfeld2, Roger Marchand3, Greg McFarquhar4, Alain Protat5
 ¹Monash University, Australia, ²Hebrew University, Israel, ³University of Washington, USA, ⁴University of Illinois, USA, ⁵Australian Bureau of Meteorology, Australia
- S10.5 A newly identified sea salt aerosol source over sea ice modeling vs observation Xin Yang*1, Markus Frey1, Sarah Norris2, Ian Brooks2, Philip Anderson3, Anna Jones1, Eric Wolff4, Michel Legrand5
 ¹British Antarctic Survey, UK, ²School of Earth and Environment, University of Leeds, UK, ³Scottish Association for Marine Science, UK, ⁴Department of Earth Science, University of Cambridge, UK, ⁵Laboratoire de Glaciologie et Géophysique de l'Environnement, France 16:00

Session 10 - Polar clouds and cloud systems II

Parallel Sessions, 4.30 - 6.00pm, Wednesday July 27th Renold C2

- S10.6 Satellite Insights into the Influence of Mixed-Phase Clouds on the Arctic Climate Tristan L'Ecuyer^{*1}, Elin McIlhattan¹, Kristof van Tricht³, Jennifer Kay², Norman Wood¹ ¹University of Wisconsin, USA, ²University of Colorado, USA, ³KU Leuven, Belgium 16:30
- S10.7 Characterization of Arctic mixed phase clouds at regional and small scales Olivier Jourdan^{*1}, Guillaume Mioche¹, Julien Delanoë², Christophe Gourbeyre¹, Régis Dupuy¹, Alfons Schwarzenböck¹
 ¹LaMP, Université Blaise Pascal, France, ²LATMOS, Université Versailles-St Quentin, France 16:45
- S10.8 Aircraft observations of arctic stratus clouds and clouds in arctic air outbreaks over the sea
 G. Lloyd¹, T. Choularton^{*1}, M.W. Gallagher¹, K. N. Bower¹, G Young¹, H Jones¹, J Crosier¹, S Abel², R Cotton², I Boutle², P Brown²
 ¹University of Manchester, UK, ²Met Office, UK
 17:00
- S10.9 Large eddy simulations using immersion-freezing ice nucleation in coupled sub-Arctic mixed-phase clouds Gillian Young*1, Paul J. Connolly1, Thomas W. Choularton1, Martin W. Gallagher1, Hazel M. Jones1, Jonathan Crosier1,2, Keith N. Bower1
 ¹Centre for Atmospheric Science, University of Manchester, UK, ²National Centre for Atmospheric Science, University of Manchester, UK, ¹7:15
- S10.10 Arctic Aerosol-Cloud Interactions during ASCOS Robin Stevens*1, Adrian Hill², Ben Shipway², Paul Field², Ken Carslaw¹
 ¹University of Leeds, UK, ²Met Office, UK
 17:30
- S10.11 Investigations of adaptive habit ice microphysics using polarimetric radar techniques Kara Sulia^{*1}, Matthew Kumjian² ¹University at Albany, USA, ²Penn State University, USA 17:45

Session 11 - Secondary ice production I

Parallel Sessions, 12.00 - 12.30pm, Friday July 29th Renold C2

S11.1 Secondary Ice Multiplication - current state of the science and recommendations for the future

Paul Field^{*1,2}, Alan Blyth⁴, Tom Choularton³, Paul Connolly³, Brown Phil¹, Paul Lawson⁵, Sonia Lasher-Trapp⁶, Gary LLoyd³, Annette Miltenberger², Dmitri Moisseev⁷, Athanasios Nenes⁸, Chris Westbrook⁹

¹Met Office, UK, ²ICAS, Univ of Leeds, UK, ³Manchester University, UK, ⁴NCAS, Univ iof Leeds, UK, ⁵SPEC inc., USA, ⁶University of Illinois, USA, ⁷University of Helsinki, Finland, ⁸Georgia Institute of Technology, USA, ⁹University of Reading, UK

12:00

S11.2 Production of secondary ice particles and splintering of freezing droplets as a potential mechanism of ice multiplication Alexei Kiselev^{*1}, Annika Lauber¹, Patricia Handmann¹, Thomas Pander¹, Thomas

Leisner^{1,2} ¹Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Germany, ²Heidelberg University, Institute of Environmental Physics, Germany 12:15

Session 11 - Secondary ice production II

Parallel Sessions, 1.30 - 3.15pm, Friday July 29th Renold C2

13:30

- S11.3 Sticking Efficiencies and Multiplication by Fragmentation in Ice-Ice Collisions Vaughan Phillips Lund University, Sweden
- S11.4 Observed and simulated cloud-top phase changes Corinna Hoose*1, Leopoldo Carro-Calvo1, Markus Karrer1, Sancho Salcedo-Sanz2, Martin Stengel3 ¹Karlsruhe Institute of Technology, Germany, ²Department of Signal Theory and Communications, Universidad de Alcalá, Spain, ³Deutscher Wetterdienst, Germany 13:45
- S11.5 Dual-polarization weather radar observations of secondary ice production regions Dmitry Moisseev^{*1,2}, Annakaisa von Lerber², Paul Field^{3,4} ¹University of Helsinki, Finland, ²Finnish Meteorological Institute, Finland, ³Met Office, UK, ⁴University of Leeds, UK 14:00
- S11.6 Microphysical analysis of a warm front using radar and in-situ data Stavros Keppas*, Jonathan Crosier, Keith Bower, Thomas Choularton University of Manchester, UK 14:15
- S11.7 On the importance of updraft speed and dwell time on the production of secondary ice based in convective clouds in southwest England
 Robert Jackson*¹, Jeffrey French¹, David Leon¹, Sonia Lasher-Trapp², Alan Blyth³
 ¹University of Wyoming, USA, ²University of Illinois at Urbana-Champaign, USA, ³University of Leeds, UK 14:30
- S11.8 The Origin of Ice at a High-Alpine Site Gary Lloyd*, Thomas Choularton, Paul Connolly, Keith Bower, Michael Flynn, Robert Farrington, Martin Gallagher, Jonathan Crosier University of Manchester, UK 14:45
- S11.9 Observation of orographic clouds at the high alpine site Jungfraujoch, Switzerland. Jan Henneberger*, Olga Henneberg, Alex Beck, Ulrike Lohmann ETH Zürich, Institute for Atmospheric and Climate Science, Switzerland 15:00

Session 12 - Aerosol-cloud-precipitation-interactions and processing I

Parallel Sessions, 3.00 - 4.15pm, Wednesday July 27th Renold C16

- S12.1 On impacts of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds
 Andrew Ackerman*1, Xiaoli Zhou², Ann Fridlind¹, Robert Wood³, Pavlos Kollias^{2,4}
 ¹NASA Goddard Institute for Space Studies, USA, ²McGill University, Canada,
 ³University of Washington, USA, ⁴Stony Brook University, USA
 15:00
- S12.2 Understanding aerosol-cloud interactions in Arctic mixed-phase clouds Gijs de Boer*^{1,2}, Matthew Shupe^{1,2}, Timothy Garrett³, David Turner⁴, Chuanfeng Zhao⁵
 ¹University of Colorado, USA, ²NOAA Earth System Research Laboratory, USA, ³University of Utah, USA, ⁴NOAA Severe Storms Laboratory, USA, ⁵Beijing Normal University, China 15:15
- S12.3 Cloud processing effects on CCN and cloud microphysics James Hudson*, Stephen Noble Desert Research Institute, USA 15:30

S12.4 The impact of aerosol particles on cloud formation and precipitation: a numerical study based on the HyMeX IOP7a case Christina Kagkara*1, Andrea I. Flossmann^{1,2}, Wolfram Wobrock^{1,2}, Celine Planche^{1,2} ¹LaMP/UBP, France, ²INSU/CNRS, France 15:45

S12.5 A Path to Constraining the Aerosol-Cloud Radiative Effect Graham Feingold^{*1}, Takanobu Yamaguchi^{2,1}, Jan Kazil^{2,1}, Allison McComiskey¹, Elisa Sena³
¹NOAA Earth System Research Laboratory, USA, ²CIRES/University of Colorado, USA, ³University of Sao Paulo, Brazil 16:00

Session 12 - Aerosol-cloud-precipitation-interactions and processing II

Parallel Sessions, 4.30 - 6.00pm, Wednesday July 27th Renold C16

- S12.6 Microphysical and Dynamical Factors Controlling the Precipitation Efficiency Response to Changes in Aerosol Loading
 Zachary Lebo*1, Graham Feingold²
 ¹University of Wyoming, USA, ²NOAA ESRL/CSD, USA
 16:30
- S12.7 3D numerical simulation of orographic cloud seeding using a bin microphysics scheme István Geresdi^{*1}, Lulin Xue², Roy Rasmussen², Noémi Sarkadi¹ ¹University of Pécs, Hungary, ²National Center for Atmospheric Research, USA 16:45
- S12.8 Do soil dust particles from semi-arid areas enhance the influence of dust on clouds? Matthias Hummel*, Jon Egill Kristjansson University of Oslo, Norway 17:00
- S12.9 Influence of ice nuclei on precipitation in deep convective clouds Marco Paukert*¹, Corinna Hoose²
 ¹Karlsruhe Institute of Technology (KIT), IMK-AAF, Germany, ²Karlsruhe Institute of Technology (KIT), IMK-TRO, Germany 17:15
- S12.10 Inclusion of forest fire smoke in WRF-CHEM simulations and its impact on deep convective clouds: A DC3 case study
 Azusa Takeishi*, Trude Storelvmo
 Yale University, USA
 17:30
- S12.11 Separating dynamical and microphysical impacts of aerosols on deep convection applying piggybacking methodology
 Wojciech W. Grabowski
 NCAR, USA
 17:45

Session 13 - Clouds and climate (including radiative properties of clouds) I

Parallel Sessions, 8.30 - 10.00am, Tuesday July 26th Renold C16

- S13.1 On the Representation of Cloud Phase in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks Trude Storelvmo*, Navjit Sagoo, Ivy Tan Yale University, USA 08:30
- S13.2 The dehydration-Greenhouse Feedback Eric Girard*, Jean-Pierre Blanchet, Setigui Keita, Ana Cirisan, Ludovick Pelletier University of Quebec at Montreal, Canada 08:45
- S13.3 Regime dependence of precipitating cloud impact parameters Anita Rapp*1, Lu Sun1, Tristan L'Ecuyer²
 ¹Texas A&M University, USA, ²University of Wisconsin-Madison, USA 09:00
- S13.4 How well do GCMs simulate transitions between closed and open marine stratocumulus clouds? Tom Goren*, Johannes Quaas University of Leipzig, Leipzig Institute for Meteorology, Germany 09:15
- S13.5 Exploring the representation of humidity variability by an assumed probability density function scheme Vera Schemann
 University of Cologne, Germany
 09:30
- S13.6 Cloud Retrievals for Climate and Weather Using Combinations of Geostationary and Polar-Orbiting Satellite Imager Data
 Patrick Minnis¹, Szedung Sun-Mack², Kristopher Bedka¹, Rabindra Palikonda^{*2}, William Smith, Jr.¹, Christopher Yost², Yan Chen², Thad Chee²
 ¹NASA Langley Research Center, USA, ²Science Systems and Applications, Inc., USA 09:45

Session 13 - Clouds and climate (including radiative properties of clouds) II

Parallel Sessions, 10.30am - 12.30pm, Tuesday July 26th Renold C16

- S13.7 A Multi-Instrument Satellite View of the Global Three-Dimensional Distribution of Cloud Liquid Water
 Jussi Leinonen*, Matthew Lebsock, Graeme Stephens *Jet Propulsion Laboratory, California Institute of Technology, USA*10:30
 S13.8 The missed marine warm clouds by the Cloud Profiling Radar and its impact on
- S13.8 The missed marine warm clouds by the Cloud Profiling Radar and its impact on the accuracy of cloud microphysical property statistics Dongyang Liu*, Qi Liu, Lingli Zhou School of Earth and Space Sciences, University of Science and Technology of China, China 10:45
- S13.9 Cloud-aerosol interactions and precipitation scavenging in the Accelerated Climate Model for Energy (ACME) Hailong Wang*, Richard Easter, Kai Zhang, Balwinder Singh, Po-Lun Ma, Yun Qian, Philip Rasch Pacific Northwest National Laboratory, USA 11:00
- S13.10 Online comparison between droplet activation parameterisations and an embedded cloud parcel model in the GCM ECHAM-HAM Daniel Partridge Stockholm University, Sweden 11:15
- S13.11 Optimal Estimation retrieval of cloud droplet number concentration for synergistic ground-based observations Daniel Merk*¹, Hartwig Deneke¹, Bernhard Pospichal² ¹Leibniz-Institute for Tropospheric Research (TROPOS), Germany, ²University Leipzig, Germany 11:30
- S13.12 Sub-millimetres, a new wavelength region for retrievals of cloud ice properties Patrick Eriksson^{*1}, Stefan Buehler², Stuart Fox³, Dong Wu⁴ ¹Chalmers University of Technology, Sweden, ²University of Hamburg, Germany, ³Met Office, UK, ⁴Goddard Space Flight Cente, USA 11:45
- S13.13 On the Influence of air mass history on aerosol-cloud interactions in the South-East Atlantic Julia Fuchs*, Jan Cermak Ruhr-Universität Bochum, Germany 12:00
- S13.14 MARINE CLOUD BRIGHTENING [MCB] REGIONAL APPLICATIONS Alan Gadian*¹, John Latham^{2,3}, Jim Fournier⁵, Ben Parkes⁴, Peter Wad hams⁶ ¹NCAS, University of Leeds, UK, ²NCAR,, USA, ³SEAS, University of Manchester, UK, ⁴L'OCEAN, University du Pierre and Marie Curie, France, ⁵Planetwork, USA, ⁶DAMTP, University of Cambridge, UK 12:15

<u>Return to Main Menu</u>

Session 13 - Clouds and climate (including radiative properties of clouds) III

Parallel Sessions, 3.00 - 4.15pm, Tuesday July 26th Renold C16

S13.15 How well can we represent the subgrid distribution of convective clouds in a climate model? Laurent Labbouz^{*1}, Zak Kipling¹, Philip Stier¹, Hugh Morrison², Jason Milbrandt³,

Alain Protat⁴ ¹University of Oxford, UK, ²National Center for Atmospheric Research, USA, ³Atmospheric Numerical Prediction Research, Environment Canada, Canada, ⁴Centre for Australian Weather and Climate Research, Australia 15:00

- S13.16 Mechanisms of convective cloud response to aerosol in a global model with a cloud field parameterisation Zak Kipling*, Laurent Labbouz, Philip Stier Department of Physics, University of Oxford, UK 15:15
- S13.17 Predator Prey: a viable concept for the parameterisation of convection? Michael Herzog*1, Leif Denby1, Cathy Hohenegger² ¹University of Cambridge, UK, ²Max Planck Institute for Meteorology, Germany 15:30
- S13.18 Evidence for Convective Invigoration from A-Train Observations Johannes Muelmenstaedt*1, Daniel Rosenfeld², Odran Sourdeval¹, Julien Delanoë³, Johannes Quaas¹
 ¹Universität Leipzig, Germany, ²Hebrew University of Jerusalem, Israel, ³LATMOS UVSQ/CNRS/UPMC/IPSL, France 15:45
- \$13.19 Space-borne observations of the most extreme storms on Earth: a new perspective from the NASA-JAXA GPM mission Kamil Mroz*1, Alessandro Battaglia^{1,2}, Frederic Tridon², Timothy James Lang⁴, Simone Tanelli³
 ¹National Centre for Earth Observation, UK, ²Department of Physics and Astronomy, University of Leicester, UK, ³Jet Propulsion Laboratory, USA, ⁴NASA Marshall Space Flight Center, USA 16:00

Session 13 - Clouds and climate (including radiative properties of clouds) IV

Parallel Sessions, 4.30 - 6.00pm, Tuesday July 26th Renold C16

- S13.20 Impact of the collection efficiencies in ice phase processes on clouds and climate Ulrike Lohmann*, David Neubauer
 ETH Zurich, Switzerland
 16:30
- S13.21 Satellite observations of cloud glaciation processes Edward Gryspeerdt*1, Odran Sourdeval1, Philipp Kühne1, Julien Delanoë2, Johannes Quaas1 ¹Universität Leipzig, Germany, ²Laboratoire Atmosphères, Milieux, Observations Spatiales/IPSL/UVSQ/CNRS/UPMC, France 16:45
- S13.22 Climatology and long-term changes in cloud cover over the ocean by using frequency distribution Marina Aleksandrova*, Sergey Gulev, Konstantin Belyaev
 P.P. Shirshov Institute of Oceanology RAS, Russia 17:00
- S13.23 Measuring ice clouds at millimeter/submillimeter wavelength how much information can we gain?
 Verena Grützun*1, Stefan A. Buehler1, Manfred Brath1, Jana Mendrok2, Patrick Eriksson2
 ¹University of Hamburg, Meteorological Institut, Germany, ²Chalmers University of Technology, Earth and Space Sciences, Sweden
 17:15
- S13.24 Dependence of the Ice Water Content and Snowfall Rate on Temperature, Globally: Comparison of In-Situ Observations, Satellite Active Remote Sensing Retrievals and Global Climate Model Simulations Andrew Heymsfield*1, Martina Kramer², Norm Wood³, Andrew Gettelman⁴, Paul Field⁵, Guosheng Liu⁶
 ¹NCAR, USA, ²Forschungszentrum, Germany, ³University of Wisconsin, USA, ⁴NCAR, USA, ⁵UK Met Office, UK, ⁶Florida State University, USA
 17:30
- S13.25 Report from the International Cloud Modeling Workshop: Exeter, UK, July 18-22, 2016 Zachary Lebo*1, Ben Shipway²
 ¹University of Wyoming, USA, ²Met Office, UK
 17:45

Session 14 - Ice nuclei and cloud condensation nuclei I

Parallel Sessions, 4.45 - 6.00pm, Monday July 25^{th} Renold C2

S14.1 Intercomparison of ice nucleation measurement methods during the Fifth International Ice Nucleation Workshop and during ambient aerosol sampling Paul DeMott^{*1}, Thomas Hill¹, Markus Petters², Daniel Cziczo³, Ottmar Möhler⁴, Naruki Hiranuma⁴, Kaitlyn Suski¹, Ezra Levin¹, Ryan Mason⁵, Christina McCluskey¹, Sarah Suda², Nicholas Rothfuss², Hans Taylor², Cedric Chou⁵, Thea Schiebel⁴, Allan Bertram⁵

¹Colorado State University, USA, ²North Carolina State University, USA, ³Massechusetts Institute of Technology, USA, ⁴Karlsruhe Institute of Technology, Germany, ⁵University of British Columbia, Canada 16:45

S14.2 Suppression of the feldspar ice nucleation activity by thin coating layers of secondary organics and sulphuric acid

Ottmar Möhler^{*1}, Naruki Hiranuma¹, Dan J. Cziczo², Paul J. DeMott³, Romy Ullrich¹, Thea Schiebel¹, Kristina Höhler¹, Claudia Mohr¹, Adam Ahern⁴, Ryan Sullivan⁴, Hashim Al-Mashat⁵, David Bell⁶, Jacqueline Wilson⁶, Alla Zelenyuk⁶, Nickolas Marsden⁷, Fabian Marth⁸, Susan Schmidt⁹, Johannes Schneider⁹, Anna Wonaschütz¹⁰, Maria A. Zawadowicz² ¹Karlsruhe Institute of Technology, Germany, ²Massachusetts Institute of

Technology, USA, ³Colorado State University, USA, ⁴Carnegie Mellon University, USA, ⁵University of California, USA, ⁶Pacific Northwest National Laboratory, USA, ⁷University of Manchester, UK, ⁸ETH, Switzerland, ⁹Max Planck Institute for Chemistry, Germany, ¹⁰University of Vienna, Austria 17:00

- S14.3 Comparing ice nucleation measurements from a suite of instrumentation: LINC, the Leipzig Ice Nucleation counter Comparison campaign Heike Wex*¹, Monika Kohn², Sarah Grawe¹, Susan Hartmann¹, Lisa Hellner¹, Paul Herenz¹, Andre Welti¹, Ulrike Lohmann², Zamin Kanji², Frank Stratmann¹
 ¹Leibniz Institute for Tropospheric Research, Germany, ²Institute for Atmospheric and Climate Science, ETH, Switzerland 17:15
- S14.4 Ice nucleation on size-selected aerosol using PINC and SPIN in sub- and super-saturated conditions with respect to water during LINC
 Monika Kohn¹, Heike Wex², Sarah Grawe², Susan Hartmann², Lisa Hellner², Paul Herenz², André Welti², Frank Stratmann², Ulrike Lohmann¹, Zamin A. Kanji^{*1}
 ¹Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland,
 ²Experimental Aerosol and Cloud Microphysics, Leibniz Institute for Tropospheric Research, Germany
 17:30

S14.5 The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles Daniel O'Sullivan*1, Benjamin J. Murray1, James Ross^{2,3}, Michael E. Webb² ¹Insititute for Climate and Atmopsheric Science, School of Earth and Environment, University of Leeds, UK, ²School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, UK, ³School of Chemistry, University of Bristol, UK 17:45

Parallel Sessions, 8.30 - 10.00am, Tuesday July 26th Renold C2

- S14.6 Heterogeneous ice nucleation ability of fresh and cloud-processed α-pinene SOA particles
 Robert Wagner*1, Kristina Höhler1, Emma Järvinen1, Alexei Kiselev1, Ottmar Möhler1, Claudia Mohr1, Aki Pajunoja2, Harald Saathoff1, Thea Schiebel1, Annele Virtanen2
 ¹Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Germany, ²Department of Applied Physics, University of Eastern Finland, Finland
 08:30
- S14.7 Moving contact lines due to electrowetting enhance ice nucleation rates
 F. Yang*, R. Shaw, C. Gurganus, S.-K. Chong, Y.-K. Yap
 Michigan Technological University, USA
 08:45
- S14.8 Observations of Ice Nucleating Particles during the ICE-D Campaign. Jim McQuaid¹, Hannah Price^{1,5}, Ben Murray^{*1}, Claire Ryder², Jennifer Brooke³, Paul Field³, Alan Blyth⁴, Paola Formenti⁶, Jamie Trembath⁵
 ¹School of Earth and Environment, University of Leeds, UK, ²Department of Meteorology, University of Reading, UK, ³Met Office, UK, ⁴National Centre for Atmospheric Science, University of Leeds, UK, ⁵Facility for Airborne Atmospheric Measurements, Cranfield University, UK, ⁶Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), France 09:00
- S14.9 Layered structure of dust and their origins in the Cape Verde region during the ICE-D campaign
 Zhiqiang Cui*1, Alan Blyth^{1,2}, Hannah Price¹, Jim McQuaid¹, Ben Murray¹, Tom Choularton³, Richard Cotton⁴, Paul Field^{1,4}, Martin Gallagher³, Keith Bower³, Lindsay Bennett^{1,2}, Ryan Neely^{1,2}, Yahui Huang¹
 ¹University of Leeds, UK, ²National Centre for Atmospheric Science, UK, ³University of Manchester, UK, ⁴Met Office, UK
 09:15
- S14.10 Observation of Ice Nucleating Particles and Cloud Microphysics with Active Remote Sensing
 Johannes Bühl*1, Patric Seifert1, Rodanthi Mamouri2, Albert Ansmann1, Ronny
 Engelmann1
 ¹TROPOS, Germany, ²Cyprus University of Technology, Cyprus
 09:30

S14.11 Conditions Influencing Transport of Fluorescent Biological Aerosol Particles in the Atmosphere and Implications for Ice Nucleation
Cynthia Twohy*1, Gavin McMeeking², Christina McCluskey³, Paul DeMott³, Thomas Hill³
¹NorthWest Research Associates, USA, ²Handix LLC, USA, ³Colorado State University, USA
09:45

Parallel Sessions, 10.30am - 12.30pm, Tuesday July 26th Renold C2

S14.12 Sea spray aerosols influence atmospheric ice nucleating particle populations

Christina Mccluskey^{*1}, Thomas Hill¹, Samuel Atwood¹, Katherine Rocci¹, Yvonne Boose², Gavin Cornwell³, Camille Sultana³, Kathryn Moore³, Andrew Martin³, Kimberly Prather³, Nicholas Rothfuss⁴, Hans Taylor⁴, Markus Petters⁴, Jurgita Ovadnevaite⁵, Darius Ceburnis⁵, Colin O'Dowd⁵, Melita Keywood⁶, Alain Protat⁷, Paul DeMott¹, Sonia Kreidenweis¹

¹Colorado State University, USA, ²ETH Swiss Federal Institute of Technology Zurich, Switzerland, ³University of California, San Diego, USA, ⁴North Carolina State University, USA, ⁵National University of Ireland, Ireland, ⁶CSIRO Atmospheric Research, Australia, ⁷Australian Bureau of Meteorology, Australia 10:30

S14.13 Global synthesis of long-term cloud condensation nuclei observations

Julia Schmale¹, Silvia Henning^{*2}, Frank Stratmann², Bas Henzing³, Patrick Schlag^{4,5}, Pasi Aalto⁶, Helmi Keskinen^{6,7}, Mikhail Paramonov⁶, Laurent Poulain², Karine Sellegri⁸, Jurgita Ovadnevaite⁹, Mira Krüger¹⁰, Anne Jefferson¹¹, James Whitehead¹², Ken Carslaw¹³, Seong Soo Yum¹⁴, Adam Kristensson¹⁵, Urs Baltensperger¹, Martin Gysel¹, CCN Team^{16,17}

¹Paul Scherrer Institute, Switzerland, ²Leibniz Institute for Tropospheric Research, Germany, ³Netherlands Organisation for Applied Scientific Research, The Netherlands, ⁴University of Utrecht, The Netherlands, ⁵Forschungszentrum Jülich, Germany, ⁶University of Helsinki, Finland, ⁷Hyytiala; Forestry Field Station, Finland, ⁸University of Clermont-Ferrand, France, ⁹National University of Ireland Galway, Ireland, ¹⁰Max Planck Institute for Chemistry, Germany, ¹¹National Oceanic and Atmospheric Administration, USA, ¹²University of Manchester, UK, ¹³University of Leeds, UK, ¹⁴Yonsei University, Republic of Korea, ¹⁵University of Lund, Sweden, ¹⁶Energy Research Centre of the Netherlands, The Netherlands, ¹⁷University of Sao Paulo, Brazil 10:45

S14.14 Physical, chemical and hygroscopic properties of urban aerosols in Seoul measured during the KORUS-AQ pre-campaign

Seong Soo Yum*1, Najin Kim1, Minsu Park1, Hye Jung Shin2, Jong Sung Park2, Seung Myung Park2, In Ho Song2, Joon Young Ahn², Gwi-Nam Bae³, Kyung-Hwan Kwak³, Hwajin Kim³ ¹Yonsei University, Republic of Korea, ²National Institute of Environmental Research, Republic of Korea, ³Korea Institute of Science and Technology, Republic of Korea 11:00

- \$14.15 IMPORTANCE OF CHEMICAL COMPOSITION OF ICE NUCLEI ON THE FORMATION OF ARCTIC ICE CLOUDS Setigui Keita*, Eric Girard ESCER Centre, Department of Earth and Atmospheric Sciences, University of Quebec at Montreal, Canada 11:15
- S14.16 Combining Theoretical and Laboratory Studies to Parameterise Contact Nucleation by Mineral Dust Luke Hande*, Corinna Hoose Karlsruhe Institute of Technology, Germany 11:30
- S14.17 The competition for water vapour between INP and CCN results in a suppression of ice Emma Simpson*, Paul Connolly, Gordon McFiggans Centre for Atmospheric Science, the University of Manchester, UK 11:45
- S14.18 A Modelling Study of the Impact of Ice Nucleation by Different Aerosol Types on the Development of a Convective Cloud. Thibault Hiron*1,2, Andrea Flossmann1,3 ¹Université Blaise Pascal, France, ²Karlsruhe Institute of Technology, Germany, ³Centre National pour la recherche Scientifique, UMR 6016, France 12:00

 S14.19 Marine organic aerosols and k-feldspar as ice nucleating particles in the atmosphere. Jesus Vergara Temprado*, Ken Carslaw, Ben Murray University of Leeds, UK 12:15

Session 15 - Cloud and precipitation chemistry I

Parallel Sessions, 3.00 - 4.15pm, Tuesday July 26th

Renold C2

- S15.1 The retention of organics during riming: wind tunnel and model results Alexander Jost*1, Karoline Diehl², Subir Kumar Mitra¹, Miklós Szakáll², Stephan Borrmann^{1,2} ¹Max Planck Institue for Chemistry, Germany, ²University of Mainz, Germany 15:00
- S15.2 Tracking the footprint of collisions and aqueous-phase chemical reactions on aerosol size distribution using a lagrangian cloud-microphysics scheme Anna Jaruga*, Piotr Dziekan, Anna Zimniak, Hanna Pawlowska University of Warsaw, Poland 15:15
- S15.3 A new method for estimating aerosol mass flux in the urban surface layer by LAS Renmin Yuan University of Science and Technology of China, China 15:30
- S15.4 Cloud residual particle composition measurements in convective clouds over the Amazon during ACRIDICON-CHUVA Christiane Schulz*1, Johannes Schneider1, Stephan Mertes2, Udo Kästner2, Stephan Borrmann1,3 ¹Max Planck Institute for Chemistry, Germany, ²Leibniz Institute for Tropospheric Research, Germany, ³Institute for Atmospheric Physics, Johannes Gutenberg University, Germany 15:45
- S15.5 Examination Of The Potential Impacts Of Dust and Pollution Aerosol Acting As Cloud Nucleating Aerosol On Water Resources In The Colorado River Basin Vandana Jha*, William R Cotton, Gustavo G Carrio, Jeffery Pierce Colorado State University, USA 16:00

Session 15 - Cloud and precipitation chemistry II

Parallel Sessions, 4.30 - 6.00pm, Tuesday July 26th

Renold C2

- S15.6 Multiphase production of oxalates on the global scale Holger Tost Johannes Gutenberg University, Germany 16:30
- S15.7 Modelling cloud chemistry at the puy de Dôme station Clémence ROSE^{*1}, Laurent DEGUILLAUME¹, Nadine CHAUMERLIAC¹, Hélène PERROUX¹, Luc PATRYL², Patrick ARMAND², Camille MOUCHEL-VALLON¹ ¹CNRS LaMP/OPGC, France, ²CEA, France 16:45
- S15.9 Combining cloud physics instruments with geochemical analysis of rain and cloud samples - a tool for better understanding aerosol-cloud interactions. Assaf Zipori^{*1}, Daniel Rosenfeld¹, Yvonne Boose², Larissa Lacher², Erel Yigal¹ ¹The Institute of Earth Sciences, Israel, ²institute for atmospheric and climate science, Swaziland 17:15
- S15.10 Chemical and microbial content of clouds collected at the Reunion island in the Indian Ocean

Mickael Vaitilingom^{*1,2}, Laurent Deguillaume¹, Magali Abrantes², Muriel Joly², Martine Sancelme², Frederic Burnet³, Jean-Marc Metzger⁴, Anne-Marie Delort², Valentin Duflot⁴, Pierre Tulet⁴ ¹LaMP/OPGC, CNRS UMR 6016, France, ²ICCF, CNRS UMR 6296, France,

³CNRM/GAME, Meteo France-CNRS UMR 3589, France, ⁴LACy/OPAR, CNRS UMR 8105, Reunion

- 17:30
- S15.11 Aerosol wet deposition at Appalachian Mountains site in the United States Constantin Andronache Boston College, USA 17:45

Session 16 - Measurement techniques (of cloud & precipitation properties) & uncertainties I

Parallel Sessions, 10.30am - 12.30pm, Monday July 25th Renold C2

- S16.1 Development of Stochastic Parameterizations of Cloud Microphysics for Models and Retrievals: Use of Uncertainty in In-Situ Observations
 Greg McFarquhar^{*1,2}, Wei Wu¹, Joe Finlon¹, Shichu Zhu¹, Dan Stechman¹, Robert Jackson^{1,3}, Robert Rauber¹, Brian Jewett¹, Alfons Schwarzenboeck⁴, Alexei Korolev⁵, Delphine Leroy⁵, J Walter Strapp⁶, Michael Poellot⁷
 ¹University of Illinois, USA, ²National Center for Atmospheric Research, USA, ³University of Wyoming, USA, ⁴Laboratoire de Météorologie Physique, CNRS/Université Blaise Pascal, France, ⁵Meteorological Service of Canada, Canada, ⁶Met Analytics, Inc., Canada, ⁷University of North Dakota, USA 10:30
- S16.2 Toward the future of cloud particle characterization with large sample volume ensemble particle probes Matthew Hayman NCAR, USA 10:45
- S16.3 How biased is the sampling of clouds by aircraft? Paul Field^{1,2}, Kalli Furtado^{*1} ¹Met Office, UK, ²University of Leeds, UK 11:00
- S16.4 Quantification of Mixed Phase Cloud Properties with Single Particle Light Scattering Polarimetry Darrel Baumgardner*1, Martina Kraemer², Martin Gallagher³, James Dorsey³, Jonathan Croiser³ ¹Droplet Measurement Technologies, USA, ²Forschung Juelich, Germany, ³University of Manchester, UK 11:15
- S16.5 A Submicron Cloud Particle Imager (CPI) for Small UAV and Manned Aircraft Paul Lawson*, Akira Kyle, Colin Gurganus SPEC Inc., USA 11:30
- S16.6 Measurements of mixed-phase and ice cloud microphysical properties with spectrum-resolved water Raman lidar and their use in evaluating cloud radar/lidar retrieval methods Jens Reichardt*, Christine Knist Deutscher Wetterdienst, Germany 11:45
- S16.7 Improved synergy retrievals of precipitation rates and ice cloud properties using cloud radar with Doppler capability Shannon Mason*1, Christine Chiu¹, Robin Hogan^{2,1} ¹University of Reading, UK, ²ECMWF, UK 12:00
- S16.8 Diagnosing Raindrop Breakup and Coalescence from Vertically Pointing Radar Observations Christopher Williams University of Colorado Boulder, USA 12:15

Session 16 - Measurement techniques (of cloud & precipitation properties) & uncertainties II

Parallel Sessions, 3.00 - 4.15pm, Monday July 25th Renold C2

- S16.9 Using a Ground Based Integrated Sensor System to Remotely Detect Supercooled Cloud Layers in Cold Climates
 Faisal Boudala*1, George Isaac², David Hudak1, Robert Crawford1, Martha Anderson3, Paul Yang4, Marie-France Turcotte⁵, Ismail Gultepe1, Di Wu1
 ¹Cloud Physics and Severe Weather Research Section, Environment and Climate Change Canada, Canada, ²Weather Impacts Consulting Incorporated, Canada, ³Department of National Defence, Government of Canada, Canada, ⁴Meteorological Service of Canada, Environment and Climate Change Canada, 5Meteorological Service of Canada, Environment and Climate Change Canada, 15:00
- S16.10 Statistical Assessment of Rainfall Properties Over Varying Scales Joshua Teves*, Michael Larsen College of Charleston, USA 15:15
- S16.11 Examination of the catch efficiency of precipitation gauges based on the type of snow

Julie M. Thériault^{*1}, Roy Rasmussen², Matteo Colli³, Luca G. Lanza³ ¹University of Quebec at Montreal, Canada, ²National Center for Atmospheric Research, USA, ³University of Genova, Italy 15:30

S16.12 Development of a New Theoretical Framework for the Analysis of Disdrometer Data
 Michael Larsen*1, Robert Lemasters², Katelyn O'Dell¹, Joshua Teves¹
 ¹College of Charleston, USA, ²Emory University, USA
 15:45

S16.13 Exploring the Microphysical Properties of Exoplanet Clouds (or Bringing Exoplanet Clouds Down to Earth)
Alexandria Johnson*^{1,2}, Sara Lance^{1,3}, Sara Seager¹, David Charbonneau⁴, Amy Bauer⁵, Daniel Cziczo¹
¹Massachusetts Institute of Technology, USA, ²Brown University, USA, ³SUNY Albany, USA, ⁴Harvard-Smithsonian Center for Astrophysics, USA, ⁵TSI Incorporated, USA
16:00

S16.14 Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dôme Observatory, France Guyot gwennolé*¹, Gourbeyre Christophe¹, Febvre Guy¹, Shcherbakov Valery¹, Burnet Fredéric², Dupont Jean Charles³, Sellegri Karine¹, Jourdan Olivier¹ *¹LaMP, France, ²Météo-France/CNRS, France, ³Institut Pierre-Simon Laplace, France*16:15

P1 Basic cloud and precipitation physics	
1.30 - 3.00pm: Poster Session 1, Monday July 25 th Renold C floor foyer	
P1.1	Parameterization of Charge Modulation of Aerosol Scavenging with Varying Relative Humidity Brian Tinsley Univ. of Texas at Dallas, USA
P1.2	Analysis of Precipitation Characteristics based on Laser Optical Spectrometer Data in Tianjin Area Ruijun Jin*, Wei Song Tianjin Weather Modification Office, China
P1.3	Extreme deformation and breakup of drop suspended in a vertical wind tunnel in the presence of a horizontal electric field. Rohini Bhalwankar*, C.G. Deshpande, A.K. Kamra Indian Institute of tropical Meteorology,, India
P1.4	Buoyancy of warm convective clouds: the role of humidity Guy Dagan*, Ilan Koren, Orit Altaratz, Reuven H. Heiblum Department of Earth and Planetary SWeizmann Institute of Science, Israel
P1.5	Moist vs. dry convection: Influence of cloud droplet growth and evaporation on turbulent flow Dennis Niedermeier ^{*1,2} , Will Cantrell ¹ , Kamal Chandrakar ¹ , Kelken Chang ¹ , David Ciochetto ¹ , Raymond Shaw ¹ ¹ Department of Physics, Michigan Technological University, USA, ² Leibniz Institute for Tropospheric Research, Germany
P1.6	Scavenging of aerosol particles and minimum collection efficiency diameter during snow precipitation Chang Hoon Jung ^{*1} , Soo Ya Bae ² , Yong Pyo Kim ³ ¹ Kyungin Women's University, Republic of Korea, ² KIAPS, Republic of Korea, ³ Ewha Womans University, Republic of Korea
P1.7	Numerical simulations for cloud droplet diffusion processes with a newly modified triple-moment bulk cloud microphysics Wei Deng*, Jiming Sun Institute of Atmospheric Physics, Chinese Academy of Sciences, China
P1.8	Numerical investigation for the effects of the vertical wind shear on the cloud droplet spectra broadening at the lateral boundary of the cumulus clouds JIMING SUN*, YONGQING WANG Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, China
P1.9	Analysis on the macro- and micro- characteristics of Cloud System Based on Airborne Particle Measuring System Liren Xu*, Jun Cai, Runqiang Chen Institute of Atmospheric Physics,Chinese Academy of Sciences, China
P1.10	Raindrop Fall Velocity Deviations from the Terminal Velocities Firat Testik*, Kalimur Rahman The University of Texas at San Antonio, USA
P1.11	Microphysical features of precipitation particles in melting layer by ground-based direct measurements Kenji Suzuki ^{*1} , Katsuhiro Nakagawa ² , Yuki Kaneko ³ , Riko Oki ³ , Kenji Nakamura ⁴ ¹ Yamaguchi University, Japan, ² National Institute of Information and Communications Technology, Japan, ³ Japan Aerospace Exploration Agency, Japan, ⁴ Dokkyo University, Japan
P1.12	Testing Lagrangian particle-based warm-rain microphysics scheme in a kinematic framework Anna Zimniak ^{*1} , Hanna Pawlowska ¹ , Wojciech W. Grabowski ² ¹ Institute of Geophysics, Faculty of Physics, University of Warsaw, Poland, ² National Center fo Atmospheric Research (NCAR), USA
P1.13	How do collision and coalescence contribute to the activation of droplets? Fabian Hoffmann*, Siegfried Raasch Leibniz Universität Hannover, Germany
P1.14	Towards micro- and macrophysical parameterization of shallow convective clouds:From Large-Eddy Simulation to multi- UAV-based cloud sampling Fayçal Lamraoui ^{*1} , Greg Roberts ^{1,2} , Frédéric Burnet ¹ ¹ Météo-France/CNRS, CNRM/GAME, France, ² Scripps Institution of Oceanography, University of California, USA
P1.15	EVOLUTION OF RAINDROP SIZE DISTRIBUTIONS DURING A STRATIFORM PRECIPITATION EVENT IN THE CITY OF LEON

(SPAIN) Carlos Blanco-Alegre¹, Amaya Castro¹, Ana I Calvo¹, Delia Fernandez-Gonzalez^{2,3}, Rosa M Valencia-Barrera², Ana M Vega-Maray², Roberto Fraile^{*1} ¹University of León Department of Physics IMARENAR Spain ²University of León Biodiversity and Environmental

Management, Spain, ³Institute of Atmospheric Sciences and Climate, Italian National Research Country, Italy

- P1.16 On the impact of internal fluctuations on growth of cloud droplets due to collision-coalescence: Numerical calculati post-gel droplet size distribution.
 Lester Alfonso^{1,2}, Graciela Binimelis de Raga^{*1}
 ¹Universidad Autonoma de la Ciudad de Mexico, Mexico, ²Centro de Ciencias de la Atmosfera, UNAM, Mexico
- P1.17 On the observation of giant sea-salt aerosol size distributions over the SE Pacific during the 2008 VOCALS deploymend Jorgen Jensen*, Alison Nugent NCAR Earth Observation Laboratory, USA
- P1.18 Collision-coalescence rates estimated from in situ observations of marine stratocumulus Mikael Witte*, Patrick Chuang, Dione Rossiter University of California Santa Cruz, USA
- P1.19 Characterizing microphysical precursor conditions for precipitation initiation in marine stratocumulus Hannah Chandler, David Mechem* University of Kansas, USA
- P1.20 A new sedimentation scheme for double moment microphysics model: How to make it fast, interactive and avoid six sorting Frederick Chosson McGill University, Canada
- P1.21 The Eastern North Atlantic ARM site: a highly-instrumented surface remote sensing and in-situ measurement site for clouds and aerosols in the remote marine boundary layer Robert Wood*1, Mark Miller², Pavlos Kollias³, Kim Nitschke⁴, Eduardo Brito de Azevedo⁵ ¹University of Washington, USA, ²Rutgers University, USA, ³Stony Brook University, USA, ⁴Los Alamos National Laboratory, USA, ⁵Universidade dos Açores, Portugal
- P1.22 Analytical solutions of the supersaturation equation for awarm cloud Ben Devenish*, K Furtado *Met Office, UK*

P2 Warm boundary layer clouds

- 1.30 3.00pm: Poster Session 4, Thursday July 28^h, Marquee
- P2.1 Aerosol-cloud interactions in ultra clean layers (UCLs): idealized parcel model study with a detailed bin microphysics scheme Kuan-Ting O*, Robert Wood

University of Washington, Department of Atmospheric Sciences, USA

- P2.2 A Comparative Case Study for Cloud Droplet Spectrum of Shallow Maritime Cumuli in RICO with Numerical Simulation and Aircraft Observations YONGQING WANG*, JIMING SUN Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- P2.3 LANFEX (Local and Non-local Fog EXperiment); instrumenting a multi-site field campaign Amanda Kerr-Munslow*, James McGregor, Jeremy Price, Robert Clark, Martyn Pickering, Tony Jones, Dave Bamber, Siân Lane, Bernard Claxton Met Office, UK
- P2.4 Evaluating the Relationship of Volumetric Soil Moisture and Low-Level Cumulus Clouds during the CLASIC Field Campaign Charles White¹, Greg McFarquhar^{*1}, Mark Miller², Brian Jewett¹, Matt McGill³, Dennis Hlavka⁴, Steven Platnick⁵, G. Thomas Arnold⁵, Albin Gasiewski⁶

¹Department of Atmospheric Sciences, University of Illinois at Urbana Champaign, USA, ²Department of Environmental Sciences, Rutgers University, USA, ³Mesoscale Atmospheric Processes Laboratory NASA/Goddard Space Flight Center, USA, ⁴Science Systems and Applications, Inc., NASA/Goddard Space Flight Center, USA, ⁵NASA/Goddard Space Flight Center, USA, ⁶Department of Electrical and Computer Engineering, University of Colorado at Boulder, USA

- P2.5 Droplet Concentration and Spectral Broadening in Southeast Pacific Stratocumulus Clouds Jefferson Snider, David Leon*, Zhien Wang University of Wyoming, USA
- P2.6 A three-moment warm rain scheme for large-eddy simulation models of precipitating shallow clouds Axel Seifert^{*1}, Ann Kristin Naumann² ¹Deutscher Wetterdienst, Germany, ²Max Planck Institute for Meteorology, Germany
- P2.7 How does fog formation vary throughout a shallow valley network? Sian Lane*, Jeremy Price, Amanda Kerr-Munslow Met Office, UK
- P2.9 Turbulent Mixing and Drizzle Formation in Stratocumulus Clouds Leehi Magaritz-Ronen*, Mark Pinsky, Alexander Khain The Hebrew University of Jerusalem, Israel
- P2.10 Large-Scale Meteorological Controls on Marine Boundary Layer Aerosol Variability over the North Atlantic Sam Pennypacker*, Rob Wood University of Washington, USA
- P2.11 Improving A Cloud Parameterization with Satellite Observations Matthew Lebsock*, Kay Suselj Jet Propulsion Laboratory, USA
- P2.12 Impacts of grid resolution on the maritime cumulus simulated by the stochastic Lagrangian cloud microphysical scheme.
 Yousuke Sato^{*1,2}, Shin-ichiro Shima²
 ¹RIKEN Advanced Institute for Computational Science, Japan, ²Graduate School of Simulation Studies, University of Hyogo, Japan
- P2.13 Scaling Analysis of Temperature and Liquid Water Content in the Marine Boundary Layer Clouds during POST Yongfeng Ma^{*1}, Szymon Malinowski¹, Katarzyna Karpińska¹, Hermann Gerber², Wojciech Kumala¹ ¹University of Warsaw, Poland, ²Gerber Scientific Inc., USA
- P2.14 High-resolution LES simulations of stratocumulus clouds and their validation with in-situ data: focus on cloud top turbulence Marta Kopec^{*1}, Szymon Malinowski¹, Zbigniew Piotrowski² ¹University of Warsaw, Faculty of Physics, Institute of Geophysics, Poland, ²Institute of Meteorology and Water Management, Poland
- P2.15 The turbulent super-saturation field during the onset of shallow cumulus convection Holger Siebert^{*1}, Raymond A. Shaw², Frank Stratmann¹ ¹Inst. f. Tropospheric Research, Germany, ²Michigan Technological University, USA
- P2.16 Momentum transport in shallow convection Linda Schlemmer^{*1,2}, Peter Bechtold², Irina Sandu², Maike Ahlgrimm²

¹Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, ²European Centre for Medium-Range Weather Forecasts, UK

- P2.17 Factors leading to the deepening of the Stratocumulus marineboundary layer Ryan Eastman*, Robert Wood University of Washington, USA
- P2.18 Simulating Feedbacks Between Stratocumulus Cloud Dynamics, Microphysics and Aerosols Over Large Scales. Daniel Grosvenor*1, Paul Field², Adrian Hill², Benjamin Shipway² ¹University of Leeds, UK, ²Met Office, UK
- P2.19 A hybrid Lagrangian-Eulerian numerical advection scheme developed for the simulations of cloud droplet diffusion growth
 Wei Lei*, Sun Jiming
 Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- P2.20 Use of W-band Doppler spectra and in situ measurements to evaluate marine stratocumulus drizzle size distribution properties predicted by two large-eddy simulation codes with bin microphysics Jasmine Remillard^{1,2}, Ann Fridlind^{*2}, Andrew Ackerman², George Tselioudis², David Mechem³, Pavlos Kollias¹, Edward Luke⁴, Patrick Chuang⁵, Michael Witte⁵, Robert Wood⁶, Kirk Ayers⁷ ¹Stony Brook University, USA, ²NASA GISS, USA, ³University of Kansas, USA, ⁴Brookhaven National Laboratory, USA, ⁵University of California, USA, ⁶University of Washington, USA, ⁷Science Systems and Applications, Inc., USA
- P2.21 The Impact of the Cloud Droplet Size Distribution Shape Parameter on Evaporation and Cloud Fraction Adele L Igel*, Susan C van den Heever Colorado State University, USA

P3 Convective clouds

- 1.30 3.00pm: Poster Session 4, Thursday July 28th , Renold C floor foyer
- P3.1 A modified cumulus parameterization scheme and its applications in the simulation of heavy rainfall
 XiBa Tang
 Institute of Atmospheric Physics, China
- P3.2 The Use of Modern Information Technologies of Consolidation of Meteorological Information and of Machine Learning for Validation of the Numerical Model of Convective Cloud Intended for Operational Forecasting of Dangerous Convective Phenomena Elena Stankova*, Dmitry Petrov, Andrey Balakshiy Saint-Petersburg State University, Russia
- P3.3 Excessive Forecasts of Precipitation produced by poorly-resolved convective plumes in a point-wise semi-Lagrangian model Jonathan Wilkinson*, Paul Field, Ben Shipway, Chris Smith, Simon Vosper, Stuart Webster, Nigel Wood, Mohamed Zerroukat Met Office, UK
- P3.4 The study of environmental conditions at the development of thunderstorms over Bulgaria Boryana Markova*1, Rumjana Mitzeva²

¹National Institute of Meteorology and Hydrology - BAS, Bulgaria, ²Faculty of Physics, University of Sofia, Bulgaria

P3.5 Simulations of a squall line case from MC3E applying three different bin microphysics schemes
Lulin Xue*1, Zach Lebo², Jiwen Fan³, Wei Wu⁴, István Geresdi⁵, Aaron Bansemer¹, Xia Chu², Hugh Morrison¹, Roy Rasmussen¹, Wojciech Grabowski¹, Andy Heymsfield¹, Greg McFarquhar⁴
¹National Center for Atmospheric Research, USA, ²University of Wyoming, USA, ³Pacific Northwest National Laboratory, USA, ⁴University of Illinois at Urbana-Champaign, USA, ⁵University of Pecs, Hungary

- P3.6 Climatological study on the morphology and environmental properties of quasistationary convective clusters during the warm season in Japan Takashi Unuma, Tetsuya Takemi* Disaster Prevention Research Institute, Kyoto University, Japan
- P3.7 Lifecycles of convective cloud morphology Sarah Taylor^{*1}, Philip Stier¹, Bethan White¹, Tobias Zinner² ¹University of Oxford, UK, ²Ludwig Maximilians Universität, Germany
- P3.8 The importance of multiple thermals in the production of ice and precipitation in COPE clouds Yahui Huang*1, Alan Blyth^{1,2}, Keith Browning², Keith Bower³, Tom Choularton³, Philip Brown⁴, Jeffrey French⁵, David Leon⁵, Sonia Lasher-Trapp⁶ ¹University of Leeds, UK, ²National Centre for Atmospheric Science, UK, ³University of Manchester, UK, ⁴Met Office, UK, ⁵University of Wyoming, USA, ⁶University of Illinois, USA
- P3.9 A mesoscale model intercomparison study of a mid-latitude event observed during the HYMEX campaign Celine Planche*^{1,2}, Wolfram Wobrock^{1,2}, Andrea Flossmann^{1,2}, Christina Kagkara⁰ ¹Université Clermont Auvergne, Laboratoire de Météorologie Physique, France, ²CNRS, INSU, UMR 6016, Laboratoire de Météorologie Physique, France
- P3.10 Evolution of convective clouds initiated over mountains observed by Ka-band scanning Doppler radar and stereo photogrammetry
 Ryohei Misumi*, Namiko Sakurai, Takeshi Maesaka, Shin-ichi Suzuki, Shingo Shimizu, Koyuru Iwanami
 National Research Institute for Earth Science and Disaster Prevention, Japan
- P3.11 Hail cloud identification indexes based on Doppler radar data in Northwestern Fujian
 Chen Binbin^{*1}, Lin Changcheng¹, Lin Wen¹, Yang Kai¹, Zhang Wei²
 ¹Fujian Meteorological Science Institute, China, ²Longyan Meteorological Bureau, China
- P3.12 An Investigation of Relationships between Wind Shear and Microphysical Pathways Leading to Convective Rainfall Shailendra Kumar*1, Sonia Lasher-Trapp1, Daniel Moser1, Jeff French2, Alan Blyth3, David Leon2 ¹University of Illinois, USA, ²University of Wyoming, USA, ³NCAS, School of Earth and Environment, Univ. of Leeds, UK

- P3.13 High-resolution numerical simulations of an unusual cloud formation Guillaume Penide^{*1}, Nicolas Ferlay¹, Fanny Minvielle¹, Timothy Garrett² ¹LOA - University of Lille, France, ²University of Utah, USA
- P3.14 Evaluation of the Microphysics of Precipitation with Multifrequency Radar Observations (EMPORiuM): a prospective study Frederic Tridon*¹, Celine Planche^{2,3}, Alessandro Battaglia^{1,4}, Marie Monier^{2,3}, Joel Van Bealen^{2,3}, Wolfram Wobrock^{2,3}
 ¹Department of Physics and Astronomy, University of Leicester, UK, ²LaMP/UBP, UK, ³INSU/CNRS, UK, ⁴National Center Earth Observation, University of Leicester, UK
- P3.15 Stochastic Parameterisation of Deep Convection Based on the Plant and Craig Approach Applied to the Bechtold Scheme Leo Separovic*, Martin Charron, Paul Vaillancourt, Jing Yang, Ayrton Zadra Recherche en Prévision Numérique Atmosphérique, Meteorological Research Division, Environment and Climate Change Canada, Canada
- P3.16 THE ROLE OF VERTICAL WIND SHEAR IN THE GREAT PYROCUMULUS OF COSTA DEL SOL (MÁLAGA, SPAIN) ON 30 AUGUST 2012 Jose Maria Sánchez-Laulhé¹, Miguel Angel Catalina², Roberto Fraile^{*3}, Maria Fernandez-Raga³ ¹AEMET, Málaga Meteorological Center, Spain, ²Regional Service against fire (INFOCA) in Málaga, Spain, ³University of León. Department of Applied Chemistry and Physics, IMARENAB, Spain
- P3.17 Drawing insights from a bin microphysical scheme to improve a bulk scheme in a simulation of a 3-dimensional squall line Gregory Thompson*1, Sarah Tessendorf1, Istvan Geresdi2, Noemi Sarkadi2 ¹NCAR-RAL, USA, ²Univ of Pecs, Hungary, Hungary
- P3.18 A pseudo-aerosol convective invigoration effect caused by meteorology Adam Varble University of Utah, USA
- P3.19 Comparison of ice particle size distributions observed during MC3E in trailing stratiform outflow with NU-WRF simulations using diagnostic and prognostic droplet number concentrations

Ann Fridlind^{*1}, Xiaowen Li^{2,3}, Di Wu^{2,4}, Marcus van Lier-Walqui^{1,5}, Wei-Kuo Tao², Andrew Ackerman¹, Greg McFarquhar⁶, Wei Wu⁶, Xiquan Dong⁷, Jingyu Wang⁷ ¹NASA GISS, USA, ²NASA GSFC, USA, ³Morgan State University, USA, ⁴Science Systems and Applications, Inc., USA, ⁵Columbia University, USA, ⁶University of Illinois, USA, ⁷University of North Dakota, USA

- P3.20 Analysis of convective updraft characteristics: Comparing models and observations using KDP columns Marcus van Lier-Walqui*^{1,2}, Ann Fridlind², Andrew Ackerman², Di Wu^{3,4}, Xiaowen Li^{5,4}, Wei-Kuo Tao⁴, Pavlos Kollias⁶, Alexander Ryzhkov^{7,8}, Scott Collis⁹ ¹Columbia University, USA, ²NASA Goddard Institute for Space Studies, USA, ³Science Systems and Applicaitons Inc., USA, ⁴NASA Goddard Space Flight Center, USA, ⁵Morgan State University, USA, ⁶Stonybrook University, USA, ⁷University of Oklahoma, USA, ⁸NOAA National Severe Storms Laboratory, USA, ⁹Argonne National Laboratory, USA
- P3.21 Application of High Speed Imaging (HSI) probe in the characterization of glaciated and mixed-phase conditions in deep convective clouds Biagio Esposito^{*1}, Alexei Korolev², Mengistu Wolde³ ¹Italian Aerospace Research Centre, Italy, ²Environment Canada, Canada, ³National Research Council, Canada
- P3.22 Characterization of tropical convective cloud structure using an airborne G-band Radiometer and W-band cloud radar in the HIWC environment Mengistu Wolde^{*1}, Cuong Nguyen¹, Philip Gabriel², Alexei Korolev³ ¹National Research Council of Canada, Canada, ²General Analytics LLC, USA, ³Environment and Climate Change Canada, Canada

P4 Mixed phase clouds

1.30 - 3.00pm: Poster Session 1, Monday July 25th , Marquee

- P4.1 Analysis on the microphysical features of raindrop size distribution under different synoptic systems in mountainous area Fujian Lin Wen*1, Lin Changcheng1, Yao Zhanyu2, Chen Binbin1, Li Dan1, Zheng Wenjun3 ¹Fujian Meteorological Science Institute, China, ²Chinese Academy of Meteorological Science, China, ³Youxi Meteorological Bureau, China
- P4.2 Investigation of Riming within Mixed-phase Stratiform Clouds Using Weather Research and Forecasting (WRF) Model Tuanjie Hou*, Hengchi Lei, Zhaoxia Hu Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- P4.3 Investigation of Mass-Dimension Relationship Parameters Within a Surface of Equally Realizable Solutions Joseph Finlon^{*1,3}, Greg McFarquhar^{1,3}, Robert Rauber¹, Brian Jewett¹, David Plummer^{1,2}, Roy Rasmussen³ ¹University of Illinois at Urbana-Champaign, USA, ²University of Wyoming, USA, ³National Center for Atmospheric Research, USA
- P4.4 Diffusion processes in mixed-phase clouds involving direct particle interactions Manuel Baumgartner*, Peter Spichtinger Johannes Gutenberg University, Germany
- P4.5 Aerosol-cloud interactions over the Arctic using the Canadian atmospheric chemistry model GEM-MACH Ana Cirisan^{*1}, Sylvie Gravel², Wanmin Gong³, Vickie Irish⁴, Allan Bertram⁴, Éric Girard¹ ¹Université du Québec à Montréal, Canada, ²Canadian Meteorological Centre, Canada, ³Environment Canada, Canada, ⁴Department of Chemistry, The University of British Columbia, Canada
- P4.6 Modeling the melting of graupel and hail in a bulk microphysics parameterization Axel Seifert^{*1}, Vivek Sant² ¹Deutscher Wetterdienst, Germany, ²Max Planck Institute for Meteorology, Germany
- P4.7 Implementing ice microphysics to a large eddy simulation model coupled with sectional aerosol module Jaakko Ahola^{*1,3}, Tomi Raatikainen¹, Juha Tonttila², Sami Romakkaniemi², Hannele Korhonen¹ ¹Finnish Meteorological Institute, Finland, ²Finnish Meteorological Institute, Finland, ³University of Turku, Finland
- P4.8 Model simulations with COSMO-SPECS: Application of prognostic INP description for stratiform clouds Martin Simmel*¹, Matthias Lieber², Oswald Knoth¹, Ina Tegen¹
 ¹TROPOS Leibniz Institute for Tropospheric Research, Germany, ²Center for Information Services and High Performance Computing (ZIH), TU Dresden, Germany
- P4.9 Comparison of large eddy simulation models for arctic clouds Tomi Raatikainen^{*1}, Jaakko Ahola¹, Juha Tonttila², Sami Romakkaniemi², Ari Laaksonen¹, Hannele Korhonen¹ ¹Finnish Meteorological Institute, Finland, ²Finnish Meteorological Institute, Finland
- P4.10 The Importance of Soil Dust for Mixed-phase Clouds in Global Climate Models Luisa Ickes*, Tanja Stanelle, Ulrike Lohmann Institute for Atmospheric and Climate Science, Switzerland
- P4.11 Aircraft measurements of mixed-phase clouds versus cloud-resolving modeling studies in Northern China Xueliang Guo*, Shichao Zhu, Guangxian Lu, Lijun Guo Chinese Academy of Meteorological Sciences, China
- P4.12 Formation and development of orographic mixed phase clouds in real cases Olga Henneberg*, Ulrike Lohmann, Jan Henneberger *ETH Zurich, Switzerland*
- P4.13 An LES study on the role of ship induced ACI in mixed-phase stratocumulus Anna Possner^{*1}, Annica Ekman², Ulrike Lohmann¹ ¹ETH Zurich, Switzerland, ²Stockholm University, Sweden
- P4.14 The evolution and precipitation production of an orographic wintertime cloud with freezing drizzle Sarah Tessendorf*¹, Jeffrey French², Courtney Weeks¹, Roy Rasmussen¹, Bart Geerts², Binod Pokharel², Lulin Xue¹, Pat Holbrook³, Derek Blestrud³, Melvin Kunkel³, Shaun Parkinson³ ¹NCAR/RAL, USA, ²University of Wyoming, USA, ³Idaho Power Company, USA
- P4.15 Modelling of water stable isotope ratios in a 1.5D bin-resolved microphysics model Andrea Flossmann^{*1,2}, Wolfram Wobrock^{1,2} ¹LaMP/UBP, France, ²INSU/CNRS, France
- P4.16 Ground based in situ measurements of arctic cloud microphysical and optical properties at Mount Zeppelin, Svalbard
 Guyot gwennolé^{*1}, Jourdan Olivier¹, Olofson Frans¹, Schwarzenboeck Alfons¹, Gourbeyre Christophe¹, Febvre Guy¹, Dupuy Régis¹, Bernard Christophe², Tunved Peter³, Ancellet Gérard⁴, Law Kathy⁴, Wobrock Wolfram¹,

Shcherbakov Valery¹ ¹LaMP, France, ²OPGC, France, ³Department of Applied Environmental Science, Sweden, ⁴LATMOS, France

- P4.17 Identification of super-cooled liquid layers in mixed-phase clouds based on cloud radar observations Anne Hirsikko¹, Ewan O'Connor^{1,2}, Mika Komppula³, Sami Romakkaniemi^{*3} ¹Finnish Meteorological Institute, Finland, ²University of Reading, UK, ³Finnish Meteorological Institute, Finland
- P4.18 Understanding microphysical controls on arctic stratus clouds: A comparison of high-resolution NWP models during the ASCOS field campaign Christopher Dearden*¹, Robin Stevens², Anna Possner³ ¹University of Manchester, UK, ²University of Leeds, UK, ³ETH, Switzerland
- P4.19 Response of mixed-phase boundary layer clouds with predominantly rapid or slow ice nucleation processes to cloud-top temperature trend
 Ann Fridlind*1, Alexander Avramov², Andrew Ackerman¹, Peter Alpert³, Daniel Knopf⁴, Paul DeMott⁵, Sarah Brooks⁶, Andrew Glen⁶
 ¹NASA GISS, USA, ²MIT, USA, ³CNRS, France, ⁴Stony Brook University, USA, ⁵Colorado State University, USA, ⁶Texas A&M University, USA
- P4.20 A model for a turbulent mixed-phase cloud Ben Devenish *Met Office, UK*

P5 Cirrus clouds

- 1.30 3.00pm: Poster Session 4, Thursday July 28th , Renold C floor foyer
- P5.1 Impact of nucleation rates on ice crystal number concentrations in cirrus clouds Patrik Marschalik*, Peter Spichtinger Johannes Gutenberg University, Germany
- P5.2 Influence of soot number emissions on contrail cirrus life cycle and climate impact Andreas Bier*, Ulrike Burkhardt DLR-Institute of Atmospheric Science, Germany
- P5.3 Redistribution of water vapour and aerosol particles by cirrus clouds Philipp Reutter^{*1}, Ralf Weigel¹, Max Port¹, Christian Rolf², Martina Krämer², Martin Schnaiter³, Emma Järvinen³, Silke Groß⁴, Martin Wirth⁴, Peter Spichtinger¹, Stephan Borrmann¹ ¹University of Mainz, Germany, ²Forschungszentrum Jülich, Germany, ³Karlsruhe Institute of Technology, Germany, ⁴German Aerospace Center (DLR), Germany
- P5.4 Subvisible cirrus clouds a dynamical systems approach Peter Spichtinger*, Elisa Spreitzer, Patrik Marschalik Johannes Gutenberg University, Germany
- P5.5 Microphysical properties of cirrus clouds between 75N and 25S derived from extensive airborne in-situ observations Martina Krämer*¹, Armin Afchine¹, Linnea Avallone^{2,12}, Darrel Baumgardner³, Stephan Borrmann⁴, Bernhard Buchholz⁵, Anja Costa³, Volker Ebert⁵, David Fahey⁶, Robert Herman⁷, Eric Jensen⁸, Marcus Klingebiel⁴, P.Lawson S.Woods⁹, Anna Luebke^{1,12}, Jessica Meyer¹, Christian Rolf¹, A.Rollins T.Thornberry⁶, Jessica Smith¹⁰, Nicole Spelten¹, Martin Zöger¹¹
 ¹Research Center Jülich, IEK-7, Germany, ²NSF, USA, ³DMT, USA, ⁴Univ. Mainz, Germany, ⁵PTB, Germany, ⁶NOAA, USA, ⁷JPL, USA, ⁸NASA, USA, ⁹SPEC Inc., USA, ¹⁰Harvard Univ., USA, ¹¹DLR-FX, Germany, ¹²formerly LASP, USA
- P5.6 A Microphysics Guide to Cirrus Clouds Part I: Cirrus Types Martina Krämer*¹, Christian Rolf¹, Anna Luebke^{1,9}, Armin Afchine¹, Nicole Spelten¹, Anja Costa¹, Jessica Meyer¹, Martin Zöger², Jessica Smith³, Robert Herman⁴, Bernhard Buchholz⁵, Volker Ebert⁵, Darrel Baumgardner⁶, Stephan Borrmann⁷, Marcus Klingebiel⁷, Linnea Avallone^{8,9}
 ¹Research Center Jülich, IEK-7, Germany, ²DLR-FX, Germany, ³Harvard Univ., USA, ⁴JPL, USA, ⁵PTB, Germany, ⁶DMT, USA, ⁷Univ. Mainz, Germany, ⁸NSF, USA, ⁹formerly LASP, USA
- P5.7 Cirrus clouds observations over the Amazon: Results from 3 lidar systems and radiosondings during the GoAmazon 2014/15 experiment Diego Gouveia^{*1}, Henrique Barbosa¹, Boris Barja³, Eduardo Landulfo² ¹Physics Institute. São Paulo University (USP), Brazil, ²Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Brazil, ³Atmospheric Optics Group of Camagüey. Meteorological Institute of Cuba, Cuba
- P5.8 Satellite retrievals of the ice crystal number concentration Odran Sourdeval^{*1}, Edward Gryspeerdt¹, Julien Delanoë³, Philipp Kühne¹, Friederike Hemmer², Johannes Quaas¹ ¹Universität Leipzig, Germany, ²Université Lille¹, France, ³LATMOS, France
- P5.9 Hysteresis of ice cloud coverage in a climate model Ulrike Burkhardt DLR Institute for Atmospheric Physics, Germany
- P5.10 Three-dimensional structure of ice supersaturation and cirrus clouds Ilona Glatt^{*1}, Peter Spichtinger¹, Patrick Neis², Andreas Petzold² ¹Institute of Atmospheric Physics, Johannes Gutenberg-University Mainz, Germany, ²Forschungszentrum Jülich GmbH, Instut für Energie- und Klimaforschung, Germany
- P5.11 Derivation of physical and optical properties of midlatitude cirrus ice crystals for a size-resolved cloud microphysics model Ann Fridlind*1, Rachel Atlas², Bastiaan van Diedenhoven^{1,3}, Junshik Um⁴, Greg McFarquhar⁴, Andrew Ackerman¹, Elisabeth Moyer², Paul Lawson⁵ ¹NASA GISS, USA, ²University of Chicago, USA, ³Columbia University, USA, ⁴University of Illinois, USA, ⁵Spec Inc., USA
- P5.12 Can detailed simulations reproduce general ice size distribution properties observed within a widespread mid-latitude synoptic cirrus deck? Ann Fridlind*1, Rachel Atlas², Robert Jackson^{3,4}, Greg McFarquhar³, Andrew Ackerman¹, Daniel Knopf⁵, Elisabeth Moyer², Paul Lawson⁶ ¹NASA GISS, USA, ²University of Chicago, USA, ³University of Illinois, USA,

 4 University of Wyoming, USA, 5 Stony Brook University, USA, 6 Spec Inc., USA

P6 Cloud electrification

1.30 - 3.00pm: Poster Session 3, Wednesday July 27th , Marquee

- P6.1 Numerical study of a severe thunderstorm formed over Bulgaria Boryana Tsenova^{*1}, Tsvetelina Dimitrova², Denitsa Barakova^{1,3}, Rumjana Mitzeva³ ¹National Institute of Meteorology and Hydrology, Bulgaria, ²Agency Hail Suppression, Bulgaria, ³Sofia University, Bulgaria
- P6.2 Numerical investigation for a deep convection electrification and lightning with a 1.5D aerosol-cloud bin model Yi Yang*, Jiming Sun

Institute of Atmospheric Physics, Chinese Academy of Sciences, China

- P6.3 Cloud and Precipitation in the Brazil: The CHUVA Project Luiz A. T. Machado*¹, Micael A. Cecchini¹, Enrique V. Mattos¹, Thiago Biscaro¹, Alan J. P. Calheiros¹, Rachel Albrecht², Earle Williams³, Jennifer Comstock⁴, Manfred Wendisch⁵ ¹INPE, Brazil, ²USP, Brazil, ³MIT, USA, ⁴PNNL, USA, ⁵Leipzig Institute for Meteorology, Germany
- P6.4 Evaluation of the Lightning Potential Index in the COSMO-Model Ulrich Blahak*, Kathrin Wapler German Meteorological Service (DWD), Germany
- P6.5 Explicit simulation of storm electrification processes in a mesoscale model and comparaison to LMA observations taken during the HyMeX experiment. Jean-Pierre Pinty*1, Christophe Bovalo1, Eric Defer1, Evelyne Richard1, Paul Krehbiel2, William Rison2, Ronald Thomas² ¹Laboratoire d'Aérologie, UMR5560, CNRS/Université de Toulouse, France, ²New Mexico Tech., USA

P7 Entrainment and mixing

- 1.30 3.00pm: Poster Session 3, Wednesday July 27th , *Renold C floor foyer*
- P7.1 Mixing at the boundary between a turbulent cloud and non-turbulent environment. Paul Goetzfried*1, Bipin Kumar², Raymond Shaw³, Joerg Schumacher¹ ¹Technische Universität Ilmenau, Germany, ²Indian Institute of Tropical Meteorology, India, ³Michigan Technological University, USA
- P7.2 Theoretical investigation of mixing in warm clouds. Homogeneous mixing Mark Pinsky^{*1}, Alexander Khain¹, Alexei Korolev² ¹The Hebrew University of Jerusalem, Israel, ²Environment Canada, Canada
- P7.3 Theoretical analysis of mixing in liquid clouds: Inhomogeneous mixing Alexander Khain^{*1}, Mark Pinsky¹, Alexey Korolev² ¹The Hebrew University of Jerusalem, Israel, ²The Hebrew University of Jerusalem, Israel, ³Environment Canada, Canada
- P7.4 Examination of the bimodal droplet spectra observed during COPE Jason Sulskis, Jeff French*, David Leon, Robert Jackson University of Wyoming, USA
- P7.5 The entrainment velocity in stratocumulus driven by radiative and evaporative cooling Alberto de Lozar*, Juan Pedro Mellado Max Planck Institute for Meteorology, Germany
- P7.6 Wind-shear effects in stratocumulus-top entrainment Juan Pedro Mellado*, Bernhard Schulz, Alberto de Lozar Max Planck Institute for Meteorology, Germany
- P7.7 A simple model for entrainment and mixing in growing deep cumulus updrafts Hugh Morrison NCAR, USA
- P7.8 Are LES model simulated cloud microphysical relationships consistent with in-situ measured ones for stratocumulus clouds?
 Kyoung Ock Choi*, Seong Soo Yum Yonsei University, Republic of Korea
- P7.9 Characteristics of cloud microphysical relationships in the clouds measured during the GoAmazon project and their implication on entrainment and mixing processes Jae Min Yeom*¹, Seong Soo Yum¹, Fan Mei², Beat Schmid², Jennifer Comstock², Luiz Machado³, Micael Cecchini³
 ¹Yonsei University, Republic of Korea, ²Pacific Northwest National Laboratory, USA, ³Instituto Nacional de Pesquisas Espaciais (INPE), Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), Brazil
- P7.10 Local entrainment rates and anisotropy of entraining structures in laboratory analogues of cumulus and stratocumulus clouds.
 Anna Górska*^{1,2}, Szymon Malinowski^{1,3}, Jacob Fugal^{2,3}, Wojciech Kumala¹
 ¹University of Warsaw, Faculty of Physics, Institute of Geophysics, Poland, ²Max Planck Institute for Chemistry, Germany, ³Institute for Atmospheric Physics, Johannes Gutenberg University of Mainz, Germany
- P7.11 Effect of Entrainment-Mixing on Cloud Microphysics: A Study using In-situ Observations Sudarsan Bera¹, Thara Prabhakaran^{*1}, Wojciech Grabowski² ¹Indian Institute of Tropical Meteorology, India, ²National Centre for Atmospheric Research, USA
- P7.12 Large-eddy simulation of the stratocumulus-topped boundary layer: a study of entrainment and anisotropic cloud-top turbulence Jesper G. Pedersen^{*1}, Szymon P. Malinowski¹, Wojciech W. Grabowski² ¹University of Warsaw, Poland, ²National Center for Atmospheric Research, USA
- P7.13 The role of updraft merging in the development of deep convection Ian Glenn, Steven Krueger* University of Utah, USA

P8 Mid-latitude cloud systems

1.30 - 3.00pm: Poster Session 3, Wednesday July 27th , Marquee

- P8.1 The simulation and mechanism analysis of '721' torrential rain in Beijing Fan Ping Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- P8.2 721-Beijing rainstorm process analysis caused by the Hetao cyclone development eastward shift xuefeng meng Inner Mongolia Autonomous Region Meteorological Observatory, China
- P8.3 Characteristics of Cloud Chart and Environment Field on a Heavy Rain in Shanxi Province in July 2011 Zhao Guixiang^{*1}, Zhao Jianfeng¹, YANG dong¹, PENG Aiguo², ZHANG Chaoming³ ¹Shanxi Meteorological Office, China, ²Pianguan Weather Station, China, ³Shanxi Atmospheric sounding technology support center, China
- P8.4 Circulation induced by low level radiative cooling Ann Kristin Naumann*, Bjorn Stevens, Cathy Hohenegger Max Planck Institute for Meteorology, Germany
- P8.5 A Modeling Study of Parameterization Schemes for Depositional Growth of Ice Crystal: Four Rainfall Cases over Tropics and Midlatitudes Xiaofan Li Zhejiang University, China
- P8.6 Effects of Large-Scale Forcing on Cloud Microphysical and Rainfall Responses to Radiation during the Landfall of Severe Tropical Storm Bilis (2006) Guoqing Zhai*, Xiaofan Xiaofan Zhejiang University, China
- P8.7 Characteristics of wintertime snowfall for the last decade in the Yeongdong region of Korea Byung-Gon Kim*¹, Seung-Hee Eun¹, Dea-Kyeong Seong¹, A-Reum Ko², Byeong-Cheol Choi², Ki-Ho Chang², Won-Seok Seo³ ¹Gangneung-Wonju National University, Republic of Korea, ²National Institute of Meteorological Study, Republic of Korea, ³Korean Polar Research Institute, Republic of Korea
- P8.8 Radar-derived structural characteristics and precipitation production of convection observed during the COnvective Precipitation Experiment (COPE)
 David Plummer*1, David Leon1, Jeffrey French1, Robert Jackson1, Ryan Neely^{2,3}, Alan Blyth^{2,3}, Lindsay Bennett^{2,3}, David Dufton²
 ¹University of Wyoming, USA, ²University of Leeds, UK, ³National Centre for Atmospheric Science, UK
- P8.9 Modeling of daytime convective development over land with COSMO-EULAG Bogdan Rosa*1, Wojciech Grabowski², Michal Ziemianski¹, Damian Wójcik¹ ¹Institute of Meteorology and Water Management - National Research Institute, Poland, ²NCAR, USA
- P8.10 Evaluation of bulk microphysics schemes in simulated snow clouds in the Hokuriku district, Japan Tetsuya Kawano*¹, Takumi Honda², Kenji Suzuki³, Soichiro Sugimoto⁴, Tsutomu Takahashi⁵ ¹Kyushu University, Japan, ²RIKEN, Japan, ³Yamaguchi University, Japan, ⁴Central Research Institute of Electric Power Industry, Japan, ⁵Honolulu, USA
- P8.11 The interaction between ice nuclei and deep convection in Southeast China Xin Deng*, Huiwen Xue Peking University, China
- P8.12 Improved predictions of atmospheric icing in Norway Bjørg Jenny Engdahl^{*1,2}, Jón Egill Kristjánsson², Gregory Thompson³, Bjørn Egil Nygaard⁴, Lisa Bengtsson⁵, Harold McInnes¹ ¹Norwegian Meteorological Institute, Norway, ²University of Oslo, Norway, ³National Center for Atmospheric Research, USA, ⁴Kjeller Vindteknikk, Norway, ⁵Swedish Meteorological and Hydrological Institute, Sweden
- P8.13 On the effect of aerosols on orographic cloud and precipitation Yan Yin*, Hui Xiao Nanjing University of Information Science and Technology, China
- P8.14 Spatio-temporal characterization of warm convective cloud fields over Central Europe Sebastian Bley*, Hartwig Deneke, Fabian Senf Leibniz Institute for Tropospheric Research, Germany
- P8.15 Comparing the spatio-temporal variability of warm cumulus clouds from ICON-LES, COSMO-DE modelling and Meteosat observations Sebastian Bley*1, Hartwig Deneke1, Fabian Senf1, Cintia Carbajal Henken2, Odran Sourdeval3 ¹Leibniz Institute for Tropospheric Research, Germany, ²FU Berlin, Institute for Space Sciences, Germany, ³University of Leipzig, Germany

- P8.16 Aerosol-Cloud interactions in orographic wave clouds (ICE-L) Annette Miltenberger*1, Paul Field^{1,2}, Adrian Hill², Ben Shipway² ¹University of Leeds, UK, ²MetOffice, UK
- P8.17 The effects of atmospheric aerosol on the warm rain process: two case studies during the COnvective Precipitation Experiment (COPE) and numerical simulations
 Zixia Liu*1, Thomas W. Choularton1, Jonathan Crosier^{1,4}, Jonathan W. Taylor1, Keith N. Bower1, Paul J. Connolly1, Martin Gallagher1, Alan M. Blyth2, Philip R. A. Brown3
 ¹Center for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK, ²National Centre for Atmospheric Science, University of Manchester, UK
- P8.18 Evaluating the role of precipitation-sized ice particles in the simulations of deep convection with a multimoment four-category ice microphysics scheme Tzu-Chin Tsai*1, Jen-Ping Chen¹, Xiquan Dong², Jingjing Tian², Jingyu Wang² ¹National Taiwan University, Taiwan, ²University of North Dakota, Grand Forks, USA
- P8.19 Monitoring fog at Sofia Airport using GNSS tropospheric products and Sofia Stability Index Anastasiya Stoycheva*1, Ilian Manafov², Keranka Vassileva³, Guergana Guerova⁴ ¹National Institute of Meteorology and Hydrology, Bulgaria, ²Bulatsa, Bulgaria, ³National Institute of Geophysics, Geodesy and Geography, BAS, Bulgaria, ⁴Sofia University, Department of Meteorology and Geophysics, Bulgaria
- P8.20 Cloud Characteristics over Beijing Revealed with IAP's Ka Band Doppler Radar Daren LU*, Hui WANG, Jinli LIU Institute of Atmospheric Physics, CAS, China
- P8.21 Evaluation of cloud properties in Environment Canada's high-resolution NWP simulations with satellite-borne radar, lidar, and aircraft in-situ observations Zhipeng Qu*¹, Alexei Korolev¹, Howard Barker¹, Mengistu Wolde², Cuong Nguyen², Alain Protat³, Julien Delanoë⁴, Alfons Schwarzenboeck⁵, Jason Milbrandt⁶, Stephane Belair⁶, Jason Cole⁶ ¹Environment and Climate Change Canada, Canada, ²National Research Council Canada, Canada, ³Bureau of Meteorology, Australia, ⁴Laboratoire Atmosphères, Milieux, Observations Spatiales, France, ⁵Université Blaise Pascal, France, ⁶Environment and Climate Change Canada, Canada, Canada, Canada
- P8.22 Meteosat-based Characterization of the Initiation and Growth of Severe Convective Storms over Central Europe
 Fabian Senf, Sebastian Bley, Daniel Merk*, Hartwig Deneke
 Leibniz Institute for Tropospheric Research, Germany
- P8.23 Dominant Cloud Microphysical Processes during the 2013 Southwest China Summer Floods Yongjie Huang^{*1,2}, Xiaopeng Cui¹ ¹Institute of Atmospheric Physics, Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China
- P8.24 Cloud microphysics simulation using multi-dimensional bin-microphysics model Akihiro Hashimoto^{*1}, Rhohei Misumi², Masataka Murakami¹ ¹Meteorological Research Institute, Japan, ²National Research Institute for Earth Science and Disaster Prevention, Japan
- P8.25 Numerical modelling of stable radiation fog Daniel Smith*1, Ian Renfrew1, Stephen Dorling1, Jeremy Price2 ¹University of East Anglia, UK, ²UK Met Office Research Unit, UK

P9 Tropical clouds and cloud systems

1.30 - 3.00pm: Poster Session 4, Thursday July 28^h, Marquee

- P9.1 Simulation of the tropical cyclone Dumile in Meso-NH : coupling between a 2-moment microphysics scheme, an aerosol scheme inititalized with MACC analysis, and an explicit emission of sea salt Thomas Hoarau^{*1}, Christelle Barthe¹, Pierre Tulet¹, Olivier Bousquet¹, Jean-Pierre Pinty², Marine Claeys³, Benoît Vié³, Julien Delanoë⁴, Jacques Pelon⁴ ¹Laboratoire de l'Atmosphère et des Cyclones (UMR 8105, CNRS / Météo-France / Université de La Réunion), France, ²Laboratoire d'Aérologie (UMR 5560, CNRS / Université de Toulouse), France, ³CNRM-GAME (UMR 3589, CNRS / Météo-France), France, ⁴LATMOS (UMR 8190, UVSQ/CNRS/UPMC-IPSL), France
- P9.2 A characterization of cold pools in the West African Sahel Miroslav Provod^{*1}, John Marsham¹, Douglas Parker¹, Cathryn Birch^{1,2} ¹University of Leeds, UK, ²Met Office @ Leeds, UK
- P9.3 The Impact of Biomass Burning Aerosols on Convective Cloud over the Western Pacific Warm Pool Hsiang-He Lee^{*1}, Chien Wang^{1,2} ¹Singapore-MIT Alliance for Research and Technology (SMART), Singapore, ²Department of Earth, Atmosphere and Planetary Science, MIT, USA
- P9.4 Emergence of consistent reflectivity profile behavior in the tropics as observed by TRMM Reuven H. Heiblum^{*1}, Orit Altaratz¹, Ilan Koren¹, Alexander Kostinski² ¹Department of Earth and Planetary Sciences, Weizmann Institute of Science, Israel, ²Department of Physics, Michigan Technological University, USA
- P9.5 The Effects of Sea-Spray on Deep Convective Cloud under strong wind conditions Jacob Shpund, Alexander Khain*, Daniel Rosenfeld The Hebrew University of Jerusalem, Israel
- P9.6 Sensitivity of precipitation to clouds over upwind ocean in the Hawaii Island Lulin Xue*, Roy Rasmussen, Kyoko Ikeda, Martyn Clark National Center for Atmospheric Research, USA
- P9.7 Evaluating cloud processes in HadGEM-UKCA in preparation for CLARIFY Nick Schutgens*, Duncan Watson-Parris, Zak Kipling, Philip Stier University of Oxford, UK
- P9.8 Convective invigoration in Indian monsoon a possibility ? Thara Prabha*¹, Gayatri Kulkarni¹, Sachin Patade¹, Neelam Malap¹, Mahen Konwar¹, Murugavel P¹, Sathi Nair¹, Duncan Axisa², Alexander Khain³ ¹Indian Institute of Tropical Meteorology, India, ²National Center for Atmospheric Research, USA, ³HUJI, Israel
- P9.9 Simulation of tropical cyclones response to aerosol type
 I-Chun Tsai*1, Jen-Ping Chen², Chih-Yao Yang²
 ¹Research Center for Environmental Changes, Academia Sinica, Taiwan, ²Department of Atmospheric Sciences, National Taiwan University, Taiwan
- P9.10 Physical basis for Cloud droplet spectral broadening in the downdraft zones Mahen Konwar, Bipin Kumar, Sudarsan Bera, T. V. Prabha* Indian Institute of Tropical Meteorology, India
- P9.11 The use of IAGOS BCP observations to evaluate satellite products developed for detecting areas of high ice water content.
 Elisabeth Öström*¹, Steven J. Abel¹, Lorenzo Labrador¹, Peter N. Francis¹, Karl Beswick², Martin W. Gallagher²
 ¹Met Office, UK, ²University of Manchester, UK
- P9.12 Variations of Ice Microphysical Properties in Tropical MCS Using Cloud In-Situ Data and Corresponding Radar Reflectivity Profiles Emmanue Fontaine*1, Delphine Leroy1, Alfons Schwarzenboeck1, Pierre Coutris1, Julien Delanoë2, Alain Protat3, Fabien Dezitter4, Alice Calmels4, Walter Strapp5, Lyle Lilie8, Pattrick Minnis6, Christopher Yost7 1UBP / CNRS / LaMP, France, 2UVSQ / CNRS / LATMOS, France, 3CAWC / BOM, France, 4AIRBUS, France, 5Met Analytics, Canada, 6NASA Langley Research Center, USA, 7Science Systems and Applications, USA, 8Science Engineering Associates, USA
- P9.13 Analysis of high-resolution cloud-precipitation distribution over Tibetan Plateteau Jinli LIU*, Ling WANG, Daren LU, Yongheng Bl Institute of Atmospheric Physics, CAS, China
- P9.14 High-resolution simulations of aerosol impacts and ice-phase microphysics in convective clouds over the Amazon
 Max Heikenfeld*, Bethan White, Natalie Weigum, Laurent Labbouz, Philip Stier
 Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, UK

- P9.15 Real case studies of the formation of cirrus clouds in the tropical tropopause layer with a mesoscale model Aurélien Podglajen
 - Laboratoire de Meteorologie Dynamique, France
- P9.16 Cloud Aerosol Interactions in Southern West African Stratocumulus Phil Rosenberg^{*1}, John Marsham¹, Paul Field^{2,1}, Adrian Hill¹ ¹University of Leeds, UK, ²Met Office, UK
- P9.17 Raindrop spectra observations in a coastal region of eastern Mexico Fernando García-García*, Guillermo Montero-Martínez, Omar Rivas-Hernández Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico
- P9.18 An ensemble approach using an optimization method to weighting convective parameterizations of the regional model BRAMS Ariane Frassoni^{*1}, Saulo R. Freitas¹, Eduardo F. P. da Luz³, Haroldo F. de Campos Velho², Manoel A. Gan¹, João Gerd Z. de Mattos¹, Georg A. Grell⁴ ¹National Institute for Space Research, Center for Weather Forecasting and Climate Studies, Brazil, ²Laboratory for Computing and Applied Mathematics, National Institute for Space Research, Brazil, ³Brazilian National Centre for Monitoring and Early Warning of Natural Disasters, Brazil, ⁴National Oceanic and Atmospheric Administration, USA
- P9.19 Seasonal aspects of cloud radiative heating in the upper troposphere lower stratosphere in the tropics Erik Johansson^{*1,2}, Abhay Devasthale¹, Tristan L'Ecuyer⁴, Annica M. L. Ekman^{2,3}, Michael Tjernström^{2,3} ¹Atmospheric Remote Sensing, Research and development department, Swedish Meteorological and Hydrological Institute (SMHI), Sweden, ²Department of Meteorology, Stockholm University (MISU), Sweden, ³Bolin Center for Climate Research, Stockholm University, Sweden, ⁴Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, USA
- P9.20 Scanning Polarimetric Doppler Cloud Radar capability in characterizing the Tropical Clouds Madhu Chandra R KALAPUREDDY^{*1}, Sukanya Patra¹, Soumojit Bose^{1,2} ¹Indian Institute of Tropical Meteorology (IITM), India, ²Birla Institute of Technology(BIT), India
- P9.21 Impacts of mesoscale convective systems development on the distribution of precipitation over Costa Rica. Ana María Durán-Quesada*^{1,2}, Daniel Poleo³, Jorge A Amador^{1,2}
 ¹Department of Atmospheric, Oceanic and Planetary Physics. School of Physics. University of Costa Rica, Costa Rica, ²Center for Geophysical Research. University of Costa Rica., Costa Rica, ³National Meteorological Institute, Costa Rica., Costa Rica.
- P9.22 Numerical Simulation of Convective Cold Pools Observed during the DYNAMO Field Campaign Adam Kochanski, Steven Krueger* *University of Utah, USA*
- P9.23 Aerosol cloud interaction in the West coast of India and Arabian sea during the drought year of 2015 Thara Prabha*1, Mahen Konwar1, Mercy Varghese1, Murugavel P1, Gayatri Kulkarni1, Sathi Nair1, Sachin Patade1, Yogesh Tiwari1, Balaji B1, Resmi E. A1, Subharthi Chowdhuri1, Aswin T3, Jayarao K1, Nandakumar K3, Safai P. D.1, Rajeevan M2
 India 2 Ministry of Forth Sciences, India 3 M. C. University, India

¹Indian Institute of Tropical Meteorology, India, ²Ministry of Earth Sciences, India, ³M. G. University, India

P10 Polar clouds and cloud systems

1.30 - 3.00pm: Poster Session 3, Wednesday July 27th , *Renold C floor foyer*

P10.1 Characteristics of clouds at the northern edge of the Southern Ocean: A comparison between ground-based lidar and satellite observations Simon Alexander^{*1}, Alain Protat²

¹Australian Antarctic Division, Australia, ²Bureau of Meteorology, Australia

- P10.2 Regional differences in Antarctic Clouds and Aerosols Part one Observations. Tom Lachlan-Cope*1, Constantino Listowski¹, Amélie Kirchgaessner¹, Russ Ladkin¹, Sebastian O'Shea², Keith Bower², Mike Flynn², Tom Choularton²
 ¹Britsh Antarctic Survey, UK, ²School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK
- P10.3 Characterization of clouds during ACSE 2014
 Peggy Achtert*¹, Ian M. Brooks¹, Georgia Sotiropoulou², Joseph Sedlar², Michael Tjernström², Barbara J. Brooks⁵, P. Ola G. Perrson³, John Prytherch¹, Dominic J. Salisbury¹, Matthew D. Shupe³, Paul E. Johnston⁴, Dan Wolfe⁴
 ¹School of Earth and Environment, UK, ²Department of Meteorology & Bolin Centre for Climate Research, Sweden, ³NOAA Earth System Research Laboratory, USA, ⁴Earth System Research Laboratory, USA, ⁵National Centre for Atmospheric Science, UK
- P10.4 Mixed-phase Convective Clouds in the High-latitude Boundary Layer over Water: evaluation of convection parameterizations with LES simulations and observations Yonggang Wang¹, Lulin Xue², Bart Geerts^{*1} ¹University of Wyoming, USA, ²NCAR, USA
- P10.5 Impact of the Convection on the Arctic Climate during Wintertime Eun-Hyuk Baek^{*1}, Sungsu Park², Baek-Min Kim¹ ¹Korea Polar Research Institue, Republic of Korea, ²Seoul National University, Republic of Korea
- P10.6 A case study evaluating Global Precipitation Measurement (GPM) observations of precipitation over the Southern Ocean Eunmi Ahn*1, Yi Huang¹, Thomas Chubb², Steven Siems¹, Michael Manton¹ ¹Monash University, Australia, ²Snowy Hydro, Australia
- P10.7 In-situ observations of supercooled liquid water in a post-frontal environment over the Southern Ocean Yi Huang^{*1}, Thomas Chubb², Steven Siems¹, Michael Manton¹, Eunmi Ahn¹ ¹Monash University, Australia, ²Snowy Hydro, Australia
- P10.8 Analyzing the dissipation of an Arctic mixed-phase cloud during the ASCOS field campaign Katharina Weixler^{*1}, Annica Ekman², Corinna Hoose¹, Marco Paukert¹, Joseph Sedlar², Michael Tjernström² ¹Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Germany, ²Department of Meteorology, Stockholm University, Sweden
- P10.9 Impact of aerosol and meteorological conditions on the persistence of Arctic mixed-phase cloud Shizuo Fu*, Huiwen Xue Peking University, China
- P10.10 Regional differences in Antarctic Clouds and Aerosols Part two Modelling Constantino Listowski^{*1}, Tom Lachlan-Cope¹, Amélie Kirchgaessner¹, Russ Ladkin¹, Sebastian O'shea², Keith Bower², Mike Flynn², Tom Choularton² ¹British Antarctic Survey, NERC, UK, ²School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK
- P10.11 The effects of microphysics on convection-permitting simulations of a Southern Ocean cyclone Kalli Furtado*1, Paul Field^{1,2} ¹Met Office, UK, ²University of Leeds, UK
- P10.12 Lidar observations of the effect of gravity-wave activity on the properties of Polar Stratospheric Clouds Peggy Achtert*¹, Matthias Tesche², Marin Stanev³, Benedikt Ehard⁴ ¹University of Leeds, UK, ²University of Hertfordshire, UK, ³Stockholm University, Sweden, ⁴DLR, Germany
- P10.13 The Dry Ice Clouds of Summit, Greenland: A study of Properies and Characteristics Claire Pettersen*1, Ralf Bennartz^{2,1}, Aronne Merrelli¹, Dave Turner³, Matthew Shupe⁴ ¹University of Wisconsin - Madison, USA, ²Vanderbilt University, USA, ³National Severe Storms Laboratory, USA, ⁴NOAA Earth System Research Laboratory, USA
- P10.14 Southern Ocean Cloud Radiation Interactions and their representation in the Australian regional forecast model as revealed by Research Vessel Investigator observations Alain Protat *Australian Bureau of Meteorology, Australia*
- P10.15 Dissecting the role of various precipitation micro-physical processes in Arctic clouds using ICECAPS observations Ralf Bennartz^{1,2} ¹Vanderbilt University, USA, ²University of Wisconsin - Madison, USA

P10.16 Evaluation of Arctic mixed-phase clouds simulated by a habit-prediction model Tempei Hashino*1, Gijs de Boer², Hajime Okamoto¹ ¹Kyushu University, Japan, ²University of Colorado, USA

P11 Secondary ice production

- 1.30 3.00pm: Poster Session 3, Wednesday July 27th , Marquee
- P11.1 Highly Active Ice Particle Production in Hokuriku Winter Snow Clouds Videosonde and HYVIS Observations Tsutomu Takahashi*1, Soichiro Sugimoto² ¹Emeritus Prof. Kyushu Univ., Japan, ²CRIEPI, Japan
- P11.2 Sensitivity of structure and polarimetric characteristic of a squall line to microphysical parameters Eyal Ilotoviz^{*1}, Alexander Khain¹, Vaughan Phillips², Alexander Ryzhkov³, Jacob Shpund¹ ¹The Hebrew University of Jerusalem, Israel, ²Lund University, Sweden, ³University of Oklahoma, USA
- P11.3 Laboratory studies of the rime-splintering process. Andreas Tofaris*, Paul Connolly, James Dorsey University of Manchester, UK
- P11.4 The role of submicron aerosol particles in the formation of high ice particle concentrations in mesoscale convective systems Luis Ladino^{*1}, Alexei Korolev¹, Ivan Heckman¹, Mengistu Wolde² ¹Environment and Climate Change Canada, Canada, ²National Research Council of Canada, Canada
- P11.5 Comparative study of very efficient ice nucleating particles in contact and immersion freezing mode Nadine Hoffmann*¹, Michael Koch¹, Hanna Guggenberger¹, Alexei Kiselev¹, Thomas Leisner^{1,2} ¹Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Germany, ²Heidelberg University, Institute of Environmental Physics, Germany

P12 Aerosol-cloud-precipitation-interactions and processing

1.30 - 3.00pm: Poster Session 3, Wednesday July 27th , Marquee

- P12.1 Characteristics of recent severe haze events in Korea and possible inadvertent weather modification Seung-Hee Eun*1, Byung Gon Kim1, Kyu-Min Lee1, Jin-Soo Park2 ¹Gangneung-Wonju National University, Republic of Korea, ²National Institute of Environmental Research, Republic of Korea
- P12.2 Numerical Simulation of Dust-Cloud Interactions Using a Regional Model Yi-Chiu Lin*¹, Jen-Ping Chen²
 ¹Taiwan Typhoon and Flood Research Institute, National Applied Research Laboratories, Taiwan, ²Department of Atmospheric Sciences, National Taiwan University, Taiwan
- P12.3 From invigoration to suppression the aerosol effect on warm convective clouds Guy Dagan*, Ilan Koren, Orit Altaratz, Reuven H. Heiblum 1Department of Earth and Planetary SWeizmann Institute of Science, Israel
- P12.4 Ice in Clouds Experiment Dust (ICE-D): In-situ aircraft measurements of cloud evolution Richard Cotton Met Office, UK
- P12.5 Marine Boundary Layer Aerosol Variability: a Budget Approach Johannes Mohrmann*, Robert Wood University of Washington, USA
- P12.6 Model simulations with COSMO-SPECS: New parameterizations of heterogeneous freezing modes Karoline Diehl*¹, Verena Grützun³, Jens Stoll², Martin Simmel², Oswald Knoth², Ralf Wolke² ¹Institute of Atmospheric Physics, University, Germany, ²Leibniz Institute for Tropospheric Research, Germany, ³Meteorological Institute, University, Germany
- P12.7 LACIS-T A wind tunnel for investigating the Interactions between Cloud Microphysics and Turbulence Jens Voigtländer*1, Dennis Niedermeier1, Holger Siebert1, Jörg Schumacher2, Raymond A. Shaw3, Frank Stratmann1 ¹Leibniz Institute for Tropospheric Research (TROPOS), Germany, ²Ilmenau University of Technology, Germany, ³Michigan Technological University, USA
- P12.8 Impacts of Aerosols Microphysics on Aerosol- Cloud-Interaction in a series of heavy haze-fog events Chunhong Zhou

Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences,, China

- P12.9 Spatial and temporal variations in aerosol properties in convection-permitting simulations in an idealised tropical marine domain Celine Planche^{*1,2}, Graham Mann^{2,3}, Mohit Dalvi⁴, Kenneth Carslaw², Paul Field⁴, John Marsham⁰ ¹Université Clermont Auvergne, Laboratoire de Météorologie Physique, CNRS, INSU, UMR 6016, France, ²School of Earth and Environment, ICAS, University of Leeds, UK, ³National Centre for Atmospheric Sciences, School of Earth and Environment, University of Leeds, UK, ⁴Met Office, UK
- P12.10 In-cloud measurements highlighting the role of chemical composition in cloud droplet activation Olli Väisänen*1, Arttu Ylisirniö1, Pasi Miettinen1, Liqing Hao1, Harri Portin2, Antti Ruuskanen2, Sami Romakkaniemi2, Kari Lehtinen1,2, Annele Virtanen1 ¹University of Eastern Finland, Finland, ²Finnish Meteorological Institute, Finland
- P12.11 Investigating the influence of water diffusion through aerosol particles on ice nucleation Kathryn Fowler*, Paul Connolly, David Topping The University of Manchester, UK
- P12.12 GIANT AEROSOLS OBSERVATIONS AND EFFECTS Pilar Gumà-Claramunt, Fabio Madonna*, Aldo Amodeo, Gelsomina Pappalardo Istituto di Metodologie per l'Analisi Ambientale Consiglio Nazionale delle Ricerche CNR-IMAA, Italy
- P12.13 CEMBAI: Climate in Eastern Mediterranean Basin Aerosol Impacts presentation of the project Marie Monier*¹, François Dulac³, Marc Mallet², Karine Sellegri¹, Jean Sciare⁵, Guillaume Penide⁷, Fabien Solmon⁶, Karine Desboeufs⁴ ¹LaMP, CNRS/UBP, France, ²LA, CNRS, France, ³LSCE, CNRS/CEA, France, ⁴LISA, CNRS/UPD, France, ⁵Cyprus Institute, Cyprus, ⁶ICTP, Italy, ⁷LOA, CNRS/Lille³, France
- P12.14 SCAVENGING OF AEROSOL PARTICLES BY RAIN IN LEON (SPAIN)
 Carlos Blanco-Alegre¹, Amaya Castro¹, Ana I Calvo¹, Elisabeth Alonso-Blanco², Delia Fernandez-Gonzalez^{3,4}, Rosa M Valencia-Barrera³, Ana M Vega-Maray³, Santiago de Castro-Alfageme³, Roberto Fraile^{*1}
 ¹University of León. Department of Physics, IMARENAB, Spain, ²Centre for Energy, Environment and Technology Research (CIEMAT), Spain, ³University of León. Biodiversity and Environmental Management, Spain, ⁴Institute of Atmospheric Sciences and Climate, Italian National Research Country, Italy
- P12.15 The Cloud System Evolution in the Trades (CSET) Study-A Showcase for Aerosol-Cloud-Precipitation Interactions Bruce Albrecht¹, Paquita Zuidema¹, Chris Bretherton², Robert Wood^{*2}, Virendra Ghate³ ¹University of Miami, USA, ²University of Washington, USA, ³Argonne National Lab, USA

- P12.16 Impacts of aerosol particle episodes on cloud physical properties and precipitation Christina Kagkara^{*1,3}, Nikolaos Hatzianastassiou³, Andrea I. Flossmann^{1,2} ¹LaMP/UBP, France, ²INSU/CNRS, France, ³Laboratory of Meteorology/University of Ioannina, Greece
- P12.17 Analysis of Remote and Combustion Aerosol over the South East Pacific and its Links to Stratocumulus Cloud Droplet Size Distribution Steffen Freitag*¹, Antony D Clarke¹, Steven G Howell¹, Jefferson R Snider², Cameron S McNaughton¹, Lindsey M Shank¹, Vladimir N Kapustin¹, Vera L Brekhovskikh¹, Jean-Louis Brenguier¹ ¹University of Hawaii at Manoa, USA, ²University of Wyoming, USA

P13 Clouds and climate (including radiative properties of clouds)

- 2.00 3.00pm: Poster Session 2, Tuesday July 26th , Renold C floor foyer
- P13.1 THE UPDATED EFFECTIVE RADIATIVE FORCING OF MAJOR ANTHROPOGENIC AEROSOLS AND THEIR EFFECTS ON GLOBAL CLIMATE AT PRESENT AND IN THE FUTURE Hua Zhang*1, Shuyun Zhao1, Zhili Wang² ¹National Climate Center, China, ²Chinese Academy of Meteorological Sciences, China
- P13.2 Sensitivity of Cloud Feedbacks to Turbulence Closure, Microphysics Scheme, and Grid Size in Cloud-Resolving RCE Simulations Andrew Lesage¹, Steven Krueger^{*1}, Marat Khairoutdinov² ¹University of Utah, USA, ²Stony Brook University, USA
- P13.3 Validation of MODIS liquid water path for oceanic non-raining warm clouds and its implication on the vertical profile of cloud water content Qi Liu*, Lingli Zhou, Dongyang Liu, Lei Xie, Lin Qi University of Science and Technology of China, China
- P13.4 Implementing a two-moment bulk cloud microphysics scheme into TaiESM Chein-Jung Shiu^{*1}, I-Chun Tsai¹, Wei-Ting Chen², Jen-Ping Chen², Huang-Hsiung Hsu¹ ¹Academia Sinica, Taiwan, ²National Taiwan University, Taiwan
- P13.5 Radiative impacts of cloud processed bimodal CCN spectra Stephen R. Noble*, James G. Hudson Desert Research Institute, USA
- P13.6 Seasonal trends in cloud vertical properties in the SE Asia region from IAGOS in situ observations Karl Beswick², Gary Lloyd^{1,2}, Tom Choularton¹, Petzold Andreas³, Matt Freer⁴, Darrel Baumgardner⁴, Martin Gallagher^{*1,2}, James Dorsey² ¹National Centre for Atmospheric Science, Manchester, UK, ²University of Manchester, Centre for Atmospheric Science, UK, ³Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, Jülich, Germany, ⁴Droplet Measurement Technology, USA
- P13.7 Climatic impact of marine organic aerosols as ice nuclei in the Arctic Wan Ting Katty Huang*, Ulrike Lohmann, Luisa Ickes Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
- P13.8 Precipitation Differences in Boreal Summer Measured by DPR Ka- and Ku-Band Yunfei Fu*, Aoqi Zhang, Yilun Chen, Lu Yu University of Science and Technology of China, China
- P13.9 Radiative effects of inter-annually varying versus inter-annually invariant aerosol emissions from fires Benjamin Grandey¹, Hsiang-He Lee^{*1}, Chien Wang^{2,1} ¹Singapore-MIT Alliance for Research and Technology, Singapore, ²Massachusetts Institute of Technology, USA
- P13.10 Observed relationship between cloud macrophysical properties and precipitation intensity Yaniv Tubul*, Reuven H Heiblum, Ilan Koren, Orit Altaratz Department of Earth and Planetary Sciences, Weizmann Institute of Science, Israel
- P13.11 Vertical Distributions and Seasonal Fluctuations from CALIOP: A Regional Aerosol-Cloud Interaction Analysis Ashley Heikkila*, Jennifer Griswold University of Hawaii at Manoa, USA
- P13.12 Large size and low number concentration cloud in mid and high latitudes Suginori Iwasaki*1, Takashi Shibata², Hisayuki Kubota³, Hajime Okamoto⁴ ¹National Defense Academy, Japan, ²Nagoya University, Japan, ³Japan Agency for Marine-Earth Science and Technology, Japan, ⁴Kyushu University, Japan
- P13.13 Evaluation and Development of Cloud Microphysical Conversion Processes in the MIROC-SPRINTARS with A-Train Observations Takuro Michibata^{*1,2}, Toshihiko Takemura¹ ¹Research Institute for Applied Mechanics, Kyushu University, Japan, ²Department of Earth System Science and Technology, Kyushu University, Japan
- P13.14 Uncertainty in the long-wave effective radiative forcing by aerosol-cloud interactions Johannes Quaas*, Irene Heyn, Karoline Block, Edward Gryspeerdt, Philipp Kühne, Johannes Mülmenstädt, Marc Salzmann University of Leipzig, Germany
- P13.15 On the relationships among cloud cover, mixed-phase partitioning, cloud feedback, and planetary albedo in GCMs

Daniel McCoy^{*1,4}, Ivy Tan², Dennis Hartmann¹, Mark Zelinka³, Trude Storelvmo² ¹University of Washington, USA, ²Yale University, USA, ³Lawrence Livermore Laboratory, USA, ⁴University of Leeds, UK

P13.16 Interannual variations of cloud fraction and cloud types in the Atlantic Arctic from the end of the 19th century

Alexander Chernokulsky^{*1}, Igor Esau^{2,3}, Olga Bulygina⁴, Igor Mokhov^{1,5}, Vladimir Semenov^{1,6} ¹Obukhov Institute of Atmospheric Physics RAS, Russia, ²Nansen Environmental and Remote Sensing Center, Norway, ³Centre for Climate Dynamics at the Bjerknes Centre, Norway, ⁴All-Russia Research Institute of Hydrometeorological Information, Russia, ⁵Lomonosov Moscow State University, Russia, ⁶Institute of Geography RAS, Russia

- P13.17 Evaluations of microphysics in a global cloud system model using TRMM/AMSR-E and a satellite simulator. Woosub Roh^{*1}, Masaki Satoh^{1,2} ¹AORI, the university of Tokyo, Japan, ²JAMSTEC, Japan
- P13.18 The longwave, shortwave and UV fluxes in the cloudy atmosphere: measurements and simulations using the onboard actinometrical complex of the aircraft-laboratory YAK-42D "ROSHYDROMET" Grigory Kolokutin, Victor Petrov*, Boris Fomin Central Aerological Observatory, Russia
- P13.19 Impact of lidar data processing on the estimation of cloud radiative forcing Fabio Madonna*1, Simone Lolli², Marco Rosoldi¹, Gelsomina Pappalardo¹, E. Judd Welton² ¹Istituto di Metodologie per l'Analisi Ambientale Consiglio Nazionale delle Ricerche CNR-IMAA, Italy, ²NASA-JCET, USA
- P13.20 On the Potential Use of 3D Monte Carlo Radiative Transfer Models in Weather and Climate Models Howard Barker^{*1}, Jason Cole¹, Jiangnan Li² ¹Environment and Climate Change Canada, Canada, ²Environment and Climate Change Canada, Canada
- P13.21 Revised Cloud-Radiation Coupling for the COSMO-Model Ulrich Blahak^{*1}, Pavel Khain², Harel Muskatel², Quiang Fu³ ¹German Meteorological Service (DWD), Germany, ²Israel Meteorological Service, Israel, ³University of Washington, USA
- P13.22 Radiative-Convective Equilibrium to Evaluate AGCM Convective Parameterizations Kevin Reed^{*1}, Brian Medeiros², Adam Herrington⁰ ¹Stony Brook University, USA, ²National Center for Atmospheric Research, USA
- P13.23 GCM cloud parameterization development from evaluation of large-eddy and SCM simulations using in situ observations and satellite retrievals of warm, boundary-layer clouds Andrew Ackerman^{*1}, Ann Fridlind¹, George Tselioudis¹, Jasmine Remillard^{1,2}, Maxwell Kelley¹ ¹NASA Goddard Institute for Space Studies, USA, ²Stony Brook University, USA

P14 Ice nuclei and cloud condensation nuclei

- 2.00 3.00pm: Poster Session 2, Tuesday July 26th , Marquee
- P14.1 A laboratory investigation of the ice nucleation efficiency of several types of mineral and soil dust Mikhail Paramonov*, Zamin A. Kanji, Ulrike Lohmann ETH Zürich, Switzerland
- P14.2 Parameterising Cloud Condensation Nuclei concentrations during HOPE Luke Hande^{*1}, Christa Engler², Corinna Hoose¹, Ina Tegen² ¹Karlsruhe Institute of Technology, Germany, ²Leibniz Institute for Tropospheric Research, Germany
- P14.3 Free tropospheric INP concentrations at the High Altitude Research Station Jungfraujoch Larissa Lacher*, Ulrike Lohmann, Zamin Kanji *ETH*, Switzerland
- P14.4 CCN measurements at the Princess Elisabeth Antarctica Research Station Paul Paul¹, Heike Wex^{*1}, Alexander Mangold², Frank Stratmann¹ ¹Leibniz Institute of Tropospheric Research, Germany, ²Royal Meteorological Institute, Belgium
- P14.5 What influences CCN properties in central Europe? Silvia Henning*, Wolfram Birmili, Alexander Beyer, Laurent Poulain, Achim Grüner, Alfred Wiedensohler, Hartmut Herrmann, Frank Stratmann Leibniz Institute for Tropospheric Research, Germany
- P14.6 Particle Hygroscopicity of Organics in the Supercooled Temperature Range Down to Minus 10°C Silvia Henning*, Alexander Beyer, Jens Voigtländer, Frank Stratmann Leibniz Institute for Tropospheric Research, Germany
- P14.7 An approximation for freezing temperature of water droplets: homogeneous nucleation and immersion mode heterogeneous ice nucelation Kuan-Ting O*, Robert Wood University of Washington, Department of Atmospheric Sciences, USA
- P14.8 The influence of particle generation on the immersion freezing behavior of different kinds of combustion ashes
 Sarah Grawe*1, Stefanie Augustin-Bauditz1, Susan Hartmann1, Lisa Hellner1, Jan B. C. Pettersson2, Andrea Prager3, Heike Wex1, Frank Stratmann1
 ¹Leibniz Institute for Tropospheric Research, Germany, ²University of Gothenburg, Sweden, ³Leibniz Institute of Surface Modification, Germany
- P14.9 Ice Nuclei Measurements over Mountain and Coastal site along West Coast of India Sandeep Wagh*, Pradeep Kumar Pallath Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, India
- P14.10 Could prediction of atmospheric dust help better modelling of heterogeneous cloud glaciation? Slobodan Nickovic^{1,2}
 ¹Republic Hydrometeorological Service of Serbia, Serbia, ²Institute of Physics, Serbia, ³L'Istituto di Metodologie per l'Analisi Ambientale, Italy
- P14.11 Long-term Measurements of Ice Nuclei Concentration at Cape Verde André Welti*, Paul Herenz, Élise Beaudin, Nadja Samtleben, Frank Stratmann Leibniz Institute for Tropospheric Research, Germany
- P14.12 A chamber study on the impact of organic components on warm and cold cloud formation Wiebke Frey*, Paul Connolly, James Dorsey, Dawei Hu, Rami Alfarra, Gordon McFiggans University of Manchester, Centre for Atmospheric Science, UK
- P14.13 Deposition ice nucleation: Can the FHH adsorption nucleation theory shed light on the temperature dependence of critical supersaturations?
 Ari Laaksonen*^{1,2}, Jussi Malila², Athanasios Nenes^{3,4}
 ¹Finnish Meteorological Institute, Finland, ²University of Eastern Finland, Finland, ³Georgia Institute of Technology, USA, ⁴ICE-HT, Foundation for Research and Technology, Greece
- P14.14 Evaluation of the immerison freezing behaviors of dust collected in northwest Greenland Yutaka Tobo^{*1,2}, Naoko Nagatsuka¹, Jun Uetake¹ ¹National Institute of Polar Research, Japan, ²SOKENDAI (The Graduate University for Advanced Studies), Japan
- P14.15 An introduction to the BACCHUS INP Database and a review of the geographical distribution of INP measurements James Atkinson*, Zamin A. Kanji, Berko Sierau, Ulrike Lohmann ETH Zürich, Switzerland
- P14.16 Closure between CCN and Cloud Droplet Concentrations for Warm Clouds in Western Japan Masataka Murakami*, Narihiro Orikasa, Atsushi Saito, Katsuya Yamashita Meteorological Reseach Institute, Japan
- P14.17 CCN activation characteristics in the presence of biomass burning plumes

Mercy Varghese^{*1}, P Murugavel¹, Sachin Patade¹, Duncan Axisa², Resmi E. A.¹, Thara Prabha¹ ¹Indian Institute of Tropical Meteorology, India, ²National Centre for Atmospheric Research, USA

- P14.18 Seasonal variations of aerosol, CCN, IN concentrations from ground-based observations at Tsukuba, Japan Narihiro Orikasa^{*1}, Atsushi Saito¹, Katsuya Yamashita², Takuya Tajiri¹, Yuji Zaizen¹, Masataka Murakami¹ ¹Meteorological Research Institute, Japan, ²Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention, Japan
- P14.19 Comparative study of ice nucleating efficiency of K-feldspar in immersion, deposition and contact freezing modes
 Thibault Hiron*^{1,2}, Andreas Peckhaus¹, Nadine Hoffmann¹, Kiselev Alexei¹, Thomas Leisner¹
 ¹Karlsruhe Institute of Technology, Germany, ²Université Blaise Pascal, France

P14.20 Measurements of Aerosol hygroscopicity in a tropical site influenced by pristine and anthropogenic polluted air masses
 Henrique Barbosa*1, Mira Pohlker², Ryan Thalman^{3,6}, Jian Wang³, Theotonio Pauliquevis⁴, Joel Brito¹, Ulrich Pöschl², Meinrat Andreae², Scot Martin⁵, Paulo Artaxo¹, Alex Araujo¹
 ¹Universidade de São Paulo, Brazil, ²Max Planck Institute for Chemistry, Germany, ³Brookhaven National Laboratory, USA, ⁴Universidade Federal de São Paulo, Brazil, ⁵Harvard University, USA, ⁶Snow College, USA

- P14.21 Understanding ice nucleation by desert dust: Feldspar composition is important Alex Harrison^{*1}, Thomas Whale¹, Benjamin Murray¹, John Morris² ¹School of Earth and Environment, University of Leeds, UK, ²Asymptote Ltd., UK
- P14.22 Immersion freezing ice nucleation ability of atmospheric aerosol particles: an experimental study on asian dust and local dust Takuya TAJIRI*, Yuji ZAIZEN, Masataka MURAKAMI Meteorological Research Institute, Japan
- P14.23 Density Functional Calculations of Thermodynamic Characteristics of Droplets on Small Solid Charged and Uncharged Nuclei Alexander Shchekin*, Tatiana Lebedeva, Dmitry Tatyanenko St Petersburg State University, Russia
- P14.24 Activity of different proteinaceous ice nucleating particles
 Susan Hartmann*1, Meilee Ling², Sarah Grawe¹, Lisa Hellner¹, Tina Šantl-Temkiv², Thomas Boesen², Heike Wex¹, Kai Finster², Jonas Jakobsson³, Jakob Löndahl³, Frank Stratmann¹
 ¹Leibniz Institute for Tropospheric Research, Germany, ²Aarhus University, Denmark, ³Lund University, Sweden
- P14.25 The new INKA instruments for laboratory and field measurements of ice nucleating particles Kristina Höhler^{*1}, Thea Schiebel¹, Jens Nadolny¹, Ezra J. T. Levin², Kaitlyn Suski², Paul J. DeMott², Ottmar Möhler¹

¹Karlsruhe Institute of Technology, Germany, ²Colorado State University, USA

P14.26 Results from the FIN-2 formal intercomparison of ice nucleation measurement methods Paul Connolly¹, Corinna Hoose^{*2}, Xiaohong Liu³, Dan Cziczo⁴, Ottmar Möhler², Paul DeMott⁵, Naruki Hiranuma², Markus Petters⁶
¹The University of Manchester, UK, ²Karlsruhe Institute of Technology, Germany, ³University of Wyoming, USA, ⁴Massachusetts Institute of Technology, USA, ⁵Colorado State University, USA, ⁶North Carolina State University, USA

P15 Cloud and precipitation chemistry

2.00 - 3.00pm: Poster Session 2, Tuesday July 26th, Marquee

- P15.1 Modeling of the volcanic convection and acid precipitation of the Piton de La Fournaise during the April 2007 eruption
 Tulet Pierre*¹, Durand Jonathan¹, Filippi Jean-Batiste², Leriche Maud³, Bielli Soline¹
 ¹LACy (CNRS, Réunion University, Météo-France), Reunion, ²SPE (CNRS, Corte University), France, ³LA
- (CNRS, Toulouse III university), FranceP15.2 Chemical Composition of Fog Water in the Winter Season in Nanjing: Observational Study Shuxian Fan

Nanjing University of Information Science and Technology, China

- P15.3 Numerical simulation of cloud chemistry using bin microphysical scheme Gabriella Schmeller*, István Geresdi University of Pécs, Hungary
- P15.4 Characterizing the Chemical Properties of Individual Metal-containing Particles in the Atmosphere of Nanjing by Single Particle Mass Spectrometry (SPAMS) Kui Chen^{*1,2}, Yan Yin^{1,2}, Shaofei Kong^{1,2}, Hui Rui¹, Honglei Wang^{1,2} ¹Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, China, ²Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, China
- P15.5 SPACCIM modelling of the non-radical aqueous-phase chemistry of organic compounds in clouds and deliquesced aerosols Andreas Tilgner*, Erik Hans Hoffmann, Luisa Schöne, Ralf Wolke, Hartmut Herrmann Leibniz Institute for Tropospheric Research (TROPOS), Germany
- P15.6 WRF Modelling of ozone transport over the West Pacific Warm Pool Richard Newton^{*1}, Geraint Vaughan¹, Charles Chemel² ¹University of Manchester, UK, ²University of Hertfordshire, UK
- P15.7 Hygroscopic parameterization of multi scale aerosol during summer in the Mount Huang, China Yang Suying, Wang qihua*, Li yanwei, Yin Yan, Zhang Zefeng, Chen Hui Nangjing university of information science and technology, China
- P15.8 Cloud condensation nuclei (CCN)-activation behaviour of atmospheric black carbon particles and acquisition of coating in fog Ghislain Motos*, Julia Schmale, Joel Corbin, Marco Zanatta, Urs Baltensperger, Martin Gysel Paul Scherrer Institute, Switzerland
- P15.9 15 years of in-situ measurements of upper tropospheric humidity and ice-supersaturated regions by the MOZAIC programme
 Patrick Neis¹, Herman G.J. Smit¹, Susanne Rohs¹, Florian Berkes¹, Philippe Nedelec², Damien Boulanger², Peter Spichtinger³, Andreas Petzold^{*1}
 ¹Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung 8: Toposphäre, Germany, ²Laboratoire d'aérologie, CNRS UMR-5560 et Observatoire Midi-Pyrénées, Université Paul-Sabatier, France, ³Institut für Physik der Atmosphäre, Johannes Gutenberg Universität, Germany
- P15.10 Role of bacteria in atmospheric chemistry: Biodegradation rates determination in cloud water, from experimentation to modelisation.
 Nolwenn Wirgot*1, Hélène Perroux^{2,3}, Muriel Joly^{1,2}, Laurent Deguillaume^{2,3}, Virginie Vinatier¹, Anne-Marie Delort^{1,4}
 ¹Blaise Pascal University, Institute of chemistry of Clermont-Ferrand, France, ²Blaise Pascal University, OPGC, LaMP, France, ³CNRS, UMR 6016, LaMP/OPGC, BP 80026, F-63171, France, ⁴CNRS, UMR 6296, ICCF, France
- P15.11 Rainwater chemistry in Central Amazonia during GoAmazon2014/5
 Theotonio Pauliquevis*1, Henrique Barbosa², Ricardo Godoi³, Rodrigo Souza⁴, Bruno Portela⁵, Glauber Cirino⁵, Cybelli Barbosa³, Priscila Kurzlop³, Carlos Yamamoto³, Paulo Artaxo²

 ¹Federal University of Sao Paulo, Brazil, ²University of Sao Paulo, Brazil, ³Federal University of Parana, Brazil, ⁴University of the State of Sao Paulo, Brazil, ⁵National Institute for Research in Amazonia, Brazil
- P15.12 Antarctic Observations of Bio-Fluorescent Aerosol Ian Crawford¹, David Topping², Simon Ruske¹, Michael Flynn¹, Keith Bower¹, Neil Brough⁵, Virginia Foot⁴, Paul Kaye³, Martin Gallagher^{*1,2} ¹University of Manchester, School of Earth, Atmospheric and Environmental Science, UK, ²National Centre for Atmospheric Science, UK, ³University of Hertfordshire, Science and Technology Research Institute, UK, ⁴Defence Science and Technology Laboratory, Porton Down,, UK, ⁵British Antarctic Survey, NERC, UK
- P15.13 Wet removal of black carbon aerosols controlled by their cloud condensation nuclei activity Sho Ohata^{*1}, Tatsuhiro Mori¹, Nobuhiro Moteki¹, Makoto Koike¹, Yutaka Kondo² ¹The University of Tokyo, Japan, ²National Institute of Polar Research, Japan

- P15.14 Observational study of the cloud condensation nuclei (CCN) activity in the Norh China Plain Chunsheng Zhao Peking Univ., China
- P15.15 Multiphase chemistry modelling using the regional model COSMO-MUSCAT: Results for the field campaign HCCT-2010.

Ralf Wolke^{*1}, Roland Schrödner², Andreas Tilgner¹, Dominik van Pinxteren¹, Hartmut Herrmann¹ ¹Leibniz-Institute for Tropospheric Research, Germany, ²Lund University, Centre for Environental and Climate Research, Sweden

P16 Measurement techniques (of cloud & precipitation properties) & uncertainties

1.30 - 3.00pm: Poster Session 1, Monday July 25th Marquee

- P16.1 Improving the retrieval of particle size spectra and liquid water content from optical spectrometer measurements using a Monte Carlo inversion method Guy Febvre, Delphine Leroy*, Valery Shcherbakov, Alfons Schwarzenboeck LaMP -CNRS/UBP-, France
- P16.2 Mass retrieval for ice crystals from particle images and ice water content measurements: a numerical optimization approach Pierre Coutris^{*1}, Delphine Leroy¹, Emmanuel Fontaine¹, Alfons Schwarzenboeck¹, J. Walter Strapp² ¹Laboratoire de Météorologie Physique (LaMP), CNRS/Université Blaise Pascal, France, ²Met Analytics, Inc., Canada
- P16.3 Characterization of response time behavior on the Fast-2D optical array probe detector board Matthew Hayman*, Katie McMenamin, Jorgen Jensen NCAR, USA
- P16.4 Study of droplet activation in thin liquid clouds using ground-based Raman lidar and ancillary remote sensors
 Marco Rosoldi*, Fabio Madonna, Gelsomina Pappalardo
 Consiglio Nazionale delle Ricerche Istituto di Metodologie per l'Analisi Ambientale, Italy
- P16.5 Cloud cover estimation based on ceilometer measurements: a comparison with visual observations Montse Costa-Surós^{*2}, Josep Calbó¹, Josep-Abel González¹, Arturo Sanchez-Lorenzo³ ¹Universitat de Girona, Spain, ²University of Warsaw, Poland, ³Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas, Spain
- P16.6 Finnish Meteorological Institute Aerosol Cloud Interaction Tube (FMI ACIT), parameters for proper operation and first results. Konstantinos Doulgeris*, David Brus Finnish Meteorological Institute, Finland
- P16.7 Calculation of polarimetric radar fields using the output of a bin microphysics scheme Noémi Sarkadi^{*1}, István Geresdi¹, Miklós Szakáll² ¹University of Pécs, Hungary, ²Johannes Gutenberg University of Mainz, Germany
- P16.8 A droplet generator system for calibrating and evaluating the performance of airborne cloud particle probes.
 Robert Jackson*, Spencer Faber, William Kuestner, Jeffrey French University of Wyoming, USA
- P16.9 Interpretation of airborne CASPOL measurements using methods developed in the CLOUD chamber Leonid Nichman*1, Emma Järvinen², James Dorsey^{1,3}, Sebastian O'Shea¹, Paul Connolly¹, Jonathan Crosier^{1,3}, Martin Gallagher¹ ¹University of Manchester, UK, ²Karlsruhe Institute of Technology, Germany, ³National Centre for Atmospheric Science, UK
- P16.10 The complexity of variational retrieval of liquid cloud properties Kerstin Ebell*, Ulrich Loehnert, Emiliano Orlandi, Susanne Crewell University of Cologne, Institute for Geophysics and Meteorology, Germany
- P16.11 Investigating a New Disdrometer Sampling Method to Reduce Measurement Variability Katelyn O'Dell*, Michael Larsen College of Charleston, USA
- P16.12 An observation system for detection of local severe snowstorm causing snow-related disaster Katsuya Yamashita*, Sento Nakai, Hiroki Motoyoshi National Research Institute for Earth Science and Disaster Prevention, Japan
- P16.13 Quantitative Estimation of Contribution of Raindrop flux to total precipitation intensity in Mixed Phase Precipitation from Optical Disdrometer Data Hiroki Motoyoshi^{*1}, Ryohei Misumi², Masaaki Ishizaka¹, Sento Nakai¹, Katsuya Yamashita¹ ¹Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention, Japan, ²Storm, Flood and Landslide Research Unit, National Research Institute for Earth Science and Disaster Prevension, Japan
- P16.14 Fast open path IR hygrometer for airborne application feasibility study Jakub Nowak^{*1}, Paweł Magryta², Michał Kustosz², Tadeusz Stacewicz², Wojciech Kumala¹, Szymon Malinowski¹ ¹University of Warsaw, Faculty of Physics, Institute of Geophysics, Poland, ²University of Warsaw, Faculty of Physics, Institute of Experimental Physics, Poland
- P16.15 Rainfall characteristics in central London: a cross sensor, high temporal resolution analysis Andrew Gabey*, Sue Grimmond, Simone Kotthaus, William Morrison University of Reading, UK
- P16.16 Compararison Study between Ultrasonic and Laser Snow Depth Meter over Daegwallyeong Site during 2011-

2014

JiWon Choi*, Ki-Ho Chang, Ha-Young Yang, Jin-Yim Jeong, Dong-Oh Park, Baek-Jo Kim National Institute of Meteorological Sciences, Republic of Korea

- P16.17 Documenting variability of ice mass-dimensional properties during winter storms in Finland Annakaisa von Lerber^{*1,2}, Dmitri Moisseev^{3,1}, Walter Petersen⁴, Ari-Matti Harri¹ ¹Finnish Meteorological Institute, Finland, ²Aalto University, Finland, ³University of Helsinki, Finland, ⁴NASA Marshall Space Flight Center, USA
- P16.18 Discriminating between liquid and ice particles measured in mixed phase cloud during the INUPIAQ campaign
 Robert Farrington*¹, Paul Connolly¹, Thomas Choularton¹, Keith Bower¹, Gary Lloyd¹, Michael Flynn¹, Christopher Hoyle², Paul Field^{3,4}, Erik Herrmann²
 ¹University of Manchester, UK, ²Paul Scherrer Institute, Switzerland, ³University of Leeds, UK, ⁴Met Office, UK
- P16.19 Providing the better methods to estimate snowfall rate by using laser disdrometers Hiroyuki Konishi^{*1}, Naohiko Hirasawa² ¹Osaka Kyoiku Univ., Japan, ²National Institute of Polar Research, Japan
- P16.20 Variability of Local Droplet Size Distributions in Marine and Arctic Stratocumulus Clouds Observed with Airborne Digital Holography
 S. Glienke^{*1,2}, O. Schlenczek^{1,3}, J. Fugal^{1,3}, R. Shaw², S. Borrmann^{1,3}
 ¹Johannes Gutenberg University Mainz, Germany, ²Michigan Technological University, USA, ³Max Planck Institute for Chemistry, Germany
- P16.21 Improvements in Optical Array Probe Characterization: Laboratory and Simulation Results Colin Gurganus*, Paul Lawson SPEC, USA
- P16.22 Uncertainties in historical precipitation and wind time series over Russia and their influence on reanalysis data
 - Pavel Shabanov P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS), Russia
- P16.23 Improved Algorithms for Radar Remote Sensing of Snowfall Rate Using Dual Polarization C Band Radar Faisal Boudala^{*1}, David Hudak¹, Sudesh Boodoo¹, Norman Donaldson¹, Rodica Nitu², Kai Wong² ¹Cloud Physics and Severe Weather Research Section, Environment and Climate Change Canada, Canada, ²2Meteorological Service of Canada, Environment Canada, Environment and Climate Change Canada, Canada
- P16.24 ADVANCED OPTICAL PACKAGE FOR ESTIMATING OF CLOUD COVER AND STRUCTURE Mikhail Krinitskiy P.P.Shirshov Institute of Oceanology of the Russian Academy of Sciences, Russia
- P16.25 Vertical profile of fog microphysics measurements : a case study. Frédéric BURNET*, Pierre-Etienne BRILOUET, Marie MAZOYER, Thierry BOURRIANNE, Jean-Michel ETCHEBERRY, Dominique LEGAIN Meteo-France/CNRS, CNRM/GAME, France
- P16.26 Comparative analysis of lab-grown ice crystals by Cryo-Scanning Electron Microscopy Lucas Bancroft*, Katie Boaggio, Kevin Hurler, Manisha Bandamede, Nathan Magee The College of New Jersey, USA
- P16.27 Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds Maximilian Maahn^{*1}, Ulrich Löhnert² ¹University of Colorado, USA, ²University of Cologne, Germany
- P16.28 Quantifying uncertainty in forward scattering probes due to non-sphericity of atmospheric ice crystals Junshik Um*, Greg M McFarquhar University of Illinois at Urbana-Champaign, USA
- P16.29 Recalibration of CAS probe during time periods with large droplet concentrations: Results from RACORO Siddhant Gupta*1, Greg M McFarquhar1, Haf Jonsson2 ¹University of Illinois at Urbana-Champaign, USA, ²Center for Interdisciplinary Remotely Piloted Aircraft Studies, Canada

P17 Applications of cloud & precipitation physics

1.30 - 3.00pm: Poster Session 1, Monday July 25th Marquee

P17.1 Effect Verification and Analysis for Artificial Precipitation Enhancement of Stratiform Cloud by Rocket in Dalian

Hongbin Li^{*1}, Yu Fu¹, Xiuping Wang², Deping Zhou³, Wenyao Pu¹, Fansheng Zhao¹, Yang He¹ ¹Dalian Weather Modification Office, China, ²Dalian Meteorological Observatory, China, ³Shenyang Institute of Atmospheric Environment, China Meteorologial Administration, China

- P17.2 Research on the use of radar products in artificial precipitation effect assessment Jun Cai*, Liren Xu, Haiyang Sun Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- P17.3 Cloud Seedability Study Using WRF Model Outputs to Drive a One-Dimensional Cloud Model Zhaoxia Hu*, Ling Jin, Hengchi Lei Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- P17.4 Second-order potential vorticity in moist atmosphere and its application in the diagnosis of heavy precipitation
 Na Li*, Shouting Gao, Lingkun Ran
 Institute of Atmospheric Physics, China
- P17.5 Using geochemical analysis of rain samples and satellite images in order to investigate cloud seeding efficiency
 Assaf Zipori*, Daniel Rosenfeld, Yigal Erel
 The Institute of Earth Sciences, Israel
- P17.6 Cloud Response after Precipitation Enhancement Operation Yilin Wang^{*1}, Zhanyu Yao² ¹Shandong Institute of Meteorology, China, ²Chinese Academy of Meteorological Sciences, China
- P17.7 Analysis On Characteristics of Radar Echoes and Conditions for Precipitation Enhancement in Gutian of Fujian Lin Changcheng*1, Yao Zhanyu², Lin Wen¹, Chen Binbin¹, Jiang shangci³, Li Dan¹ ¹Fujian Institute of Meteorological Science, China, ²Chinese Academy of Meteorological Sciences, China, ³Gutian Observatory of Ningde Meteorological Bureau, China
- P17.8 Simulation of an orographic cloud airborne seeding case using a bin microphysics scheme Lulin Xue^{*1}, István Geresdi², Roy Rasmussen¹, Sarah Tessendorf¹, Courtney Weeks¹, Jeffrey French³, Bart Geerts³, Pat Holbrook⁴, Derek Blestrud⁴, Mel Kunkel⁴, Shaun Parkinson⁴ ¹National Center for Atmospheric Research, USA, ²University of Pécs, Hungary, ³University of Wyoming, USA, ⁴Idaho Power Company, USA
- P17.9 Observation and study of macro and micro physical responses in cold cloud catalytic Yuwen SUN^{1,2}, Xiangfeng HU^{1,2}, Baodong LI*^{1,2}, Zhihui WU^{1,2}, Xiaobo DONG^{1,2}
 ¹Hebei weather modification office, China, ²Hebei Key Laboratory of Meteorology and Ecology Environment, China
- P17.10 Examination of Potential Changes in Orographic Precipitation and Snowpack over the Western United States in a Future Climate from a High Resolution 10 year CONUS Simulation using WRF Roy Rasmussen*¹, Kyoko Ikeda¹, Changhai Liu¹, Aiguo Dai² ¹NCAR, USA, ²State University of New York, USA
- P17.11 The modern climatology of Northern Eurasia tornadoes Alexander Chernokulsky^{*1}, Michael Kurgansky^{1,2}, Igor Mokhov^{1,2}, Evgeniya Selezneva³, Andrei Shikhov⁴, Denis Zakharchenko², Bogdan Antonescu⁵
 ¹Obukhov Institute of Atmospheric Physics RAS, Russia, ²Lomonosov Moscow State University, Russia, ³Institute of Mathematical Problems of Biology RAS, Russia, ⁴Perm State University, Russia, ⁵Centre for Atmospheric Science School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, UK
- P17.12 Cloud physical response of cloud seeding based on radar observation Zhanyu YAO Chinese Academy of Meteorological Sciences, China
- P17.13 An analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds at Daegwallyeong during 2013-2015
 Ha-Young Yang*, Sanghee Chae, Seong-Kyu Seo, Jin-Yim Jeong, Ki-Ho Chang, Young-San Park, Jiwon Choi, Baek-Jo Kim
 National Institute of Meteorological Sciences, Republic of Korea
- P17.14 Probabilistic Quantitative Precipitation Forecast of Different Type Typhoons in Taiwan Hsu-Feng Teng Department of Atmospheric Sciences, National Taiwan University, Taiwan

P17.15 Silver Iodide Ice Nucleus Observations On and Over the Medicine Bow Range, Wyoming Bruce Boe Weather Modification, Inc., USA